
2018 Fall Intelligent Robot Lab Undergraduate Special Project 
Visual Search with ORB Slam2 & Semantic Segmentation 

 
Author:         Szu-Yu Mo  
Department:  Electronic Engineering, National Taiwan University 
Student ID:   B04901164 
Advisor:        Professor Li-Chen Fu 
Senior:          Shao-Hung Chan 
Project date:  September 2018 - January 2019 
DEMO video (without localization): https://goo.gl/pcxhpR 
DEMO video (with localization):      https://goo.gl/DfUDRe 

 

Content 
● Abstract 
● Motivation 
● Paper Survey 
● Learning Robot Operating System (ROS) 
● Environment setup 
● System Structure 
● Algorithms 
● Achievement 
● Future Work 
● Reference  

1 



Abstract 
In this semester, I successfully built a real-time visual search system based on the 

octomap constructed by ORB slam2 and semantic segmentation. The whole system runs on 
Robot Operating System (ROS), using the Asus Xtion camera as the only sensor. Adapting 
the RGB-D version of ORB slam2, the system is able to estimate camera poses accurately. 
Using a PSPNet model first trained on ADE20K dataset and then fine-tuned on SUNRGBD 
data set, I was able to precisely predict the object classification for each pixel in the frame. 
Combining those two results in a semantic octomap, which I later made use of to develop the 
localization algorithm. In the end, I was able to locate the target object in the world 
coordinate system. For the next semester, I plan to append the navigation function to the 
current system and thus producing a complete visual search engine.  

2 



Motivation 
During the last summer internship, I had built a feature-based monocular visual 

odometry system. This experience has sparked my interest in simultaneous localization and 
mapping (slam) algorithm. Since this lab owns several robots, I was thinking of applying the 
slam algorithm on one of them and make some improvements or applications. Asking 
Shao-Hung for advice, I decided to try to combine semantic segmentation with slam. Upon 
finding a Github repo about semantic mapping, I started to focus my work on the localization 
algorithm. Later on, I thought that a robot should not only know where it is, but also figure 
out the way it can go to a specific destination. That is the moment I picture my system having 
localization and navigation functions. 
 
Paper Survey 

I. ORB-SLAM2: an Open-Source SLAM System for Monocular, Stereo and 
RGB-D Cameras 

This paper is written by Raul Mur-Artal, Juan D. Tardos, J. M. M. Montiel. 
They conducted an efficient slam system based on ORB features, currently available 
for monocular, stereo, RGB-D, and AR cameras. It computes the camera trajectory 
and a sparse 3D reconstruction​ ​in real time, with three threads running 
simultaneously: tracking, local mapping, and loop closing. The system structure can 
be seen in fig. 1. 

  
Fig. 1 ORB slam2 system structure         Fig. 2 KeyFrames, MapPoints, and Covisibility Graph 

 
First of all, in the “tracking” thread, camera poses are estimated. ORB features 

are extracted for each frame to localize the camera, known as the camera pose 
initialization. Next, camera poses are optimized over the Covisibility Graph (fig. 2). 
This thread also decides the insertion of a new keyframe, since memory consumption 
is a big issue for a feature-based slam. Secondly, the “local mapping” thread would 
process newly inserted keyframes and perform local bundle adjustments (BA). In 
addition, it would triangulate new points with unmatched ORB descriptor in the new 
keyframe as well as get rid of redundant keyframes and outliers. Finally, the third 
thread “loop closing” search for loops with every new keyframe by DBoW2 (bags of 
words). If a loop is detected, drifts will be computed and both sides of the loop will be 

3 



fused together. A pose-graph optimization is also conducted over the Essential Graph 
(fig. 3). In conclusion, this system is stable a wide variety of environments and can 
close large loops and perform global relocalization in real-time. 

 
Fig. 3 Spanning Tree and Essential Graph  

 
II. Bags of Binary Words for Fast Place Recognition in Image Sequences 

This is the system used for loop detection and relocalization in ORB slam2. It 
utilizes bags of binary words for place recognition, where the words are BRIEF 
descriptors. The classification is done by kmeans++ clustering. The vocabulary tree is 
shown in fig. 4. 

 
Fig. 4 Vocabulary tree of DBoW2                         Fig. 5 DS-SLAM system structure 

 
III. DS-SLAM: A Semantic Visual SLAM towards Dynamic Environments 

The system is based on ORB slam2. However, the authors utilize SegNet to 
perform semantic segmentations on each frame and combined the results with poses 
estimated by ORB slam2 into a dense semantic octomap. DS-SLAM also combines 
semantic segmentation network with moving consistency check method to reduce the 
impact of dynamic objects, and thus the localization accuracy is highly improved in 
dynamic environments. The DS-SLAM system structure is shown in Fig. 5. 

 
IV. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image 

Segmentation 
Semantic segmentation is a combination of a combination of classification and 

object detection, giving us the understanding of an image at the pixel level. The 
differences in classification, object detection, and semantic segmentation are 
visualized in fig. 6. The general structure of the net consists of an encoder network 

4 



followed by a decoder network, and so does SegNet. The encoder is usually a 
pre-trained classification network like VGG/ResNet, while the decoder is to 
semantically project the discriminative features (lower resolution) learned by the 
encoder onto the pixel space (higher resolution) to get a dense classification. 

 
Fig. 6 Difference among classification, object detection, and semantic segmentation 

Existing approaches include FCN, SegNet, Dilated Convolutions, DeepLab, 
RefineNet, PSPNet, and Large Kernel Matters. FCN architecture can be seen in fig. 7, 
and SegNet architecture is shown in fig. 8. Instead of copying the encoder features as 
in FCN, SegNet copied indices from the maxpooling layers, and thus became more 
memory efficient than FCN. 

 
Fig. 7 FCN architecture  

 
Fig. 8 SegNet architecture 

 

V. Real-time Semantic Slam in ROS with a Handheld RGB-D Camera 
This is actually a Github repository Shao-Hung found about semantic slam, 

which is exactly what I want to do. As a result, my system is based on this research. 
The system structure is shown in fig. 9. The author constructed a voxel-based 3D 
semantic map with a handheld RGB-D camera in real time. He combined the 

5 



state-of-the-art feature based ORB-SLAM, a Convolutional Neural Network (CNN) 
for semantic segmentation – PSPNet and an efficient voxel-based 3D map 
representation – Octomap to build a working system. Detailed elaboration would be 
mentioned in my system structure. 

 
Fig. 9 Semantic Slam system                                          Fig. 10 Search strategies 

 
VI. Search in the Real World: Active Visual Object Search Based on Spatial 

Relations 
This paper helped me with the design of octomap localization. The visual 

search here focused on spatial relations among objects. Take looking for a book for 
example. It is highly possible to be in a study room, so we should look in it first 
instead of other rooms. Inside the room, it is highly possible that it is on a table or in a 
bookshelf, so we can first look for those rather large objects. The search strategies can 
be observed through fig. 10. 
 

Learning Robot Operating System (ROS) 
Since my system depends on data of cameras and several data communications among 

processes, it would be extremely convenient to use ROS as a platform to transfer information. 
Lacking experience of it, I went through the official beginners’ tutorials on ROS Wiki. The 
following is a summary about those lessons. 

I.  Installing and configuring my ROS environment 
II. Navagating the ROS filesystem 

III. Creating and building a ROS package 
IV. Understanding ROS nodes, topics,  and sevices 
V. Using roslaunch 

VI. Creating a ROS msg and srv 
VII. Writing a simple publisher and subscriber 

VIII. Writing a simple service and client  

6 



Environment Setup 
The system requires an Asus Xtion camera and a pc/laptop with GPU running on 

Ubuntu 16.04. As for the software packages, there are several dependencies necessary. They 
will be illustrated in the following paragraphs.  

 
I. Installing ROS Kinetic 

Kinetic is the ROS version compatible with Ubuntu 16.04.  
$ sudo sh -c 'echo "deb http://packages.ros.org/ros/ubuntu $(lsb_release -sc) main" > 
/etc/apt/sources.list.d/ros-latest.list' 
$ sudo apt-key adv --keyserver hkp://ha.pool.sks-keyservers.net:80 --recv-key 
421C365BD9FF1F717815A3895523BAEEB01FA116 
$ sudo apt-get update 
$ sudo apt-get install ros-kinetic-desktop-full 
$ sudo rosdep init 
$ rosdep update 
$ echo "source /opt/ros/kinetic/setup.bash" >> ~/.bashrc 
$ source ~/.bashrc 
$ sudo apt install python-rosinstall python-rosinstall-generator python-wstool 
build-essential 
 

II. Installing Openni2 Driver for Xtion Camera 
$ sudo apt-get install ros-kinetic-rgbd-launch  
$ sudo apt-get install ros-kinetic-openni2-camera  
$ sudo apt-get install ros-kinetic-openni2-launch 
 

III. Installing Semantic_slam 
$ roscd 
$ git clone ​https://github.com/floatlazer/semantic_slam.git 
$ pip3 install torch torchvision  #pytorch 0.4.0 
Install Pangolin following instructions at https://github.com/stevenlovegrove/Pangolin 
Install OpenCV required version at leas 2.4.3 
Install Eigen3 following instructions at ​http://eigen.tuxfamily.org 
$ cd semantic_slam/ORB_SLAM2 
$ ./build.sh 
$ rosdep install semantic_slam 
$ cd ~/catkin_ws 
$ catkin_make 

 
IV. Compiling and Running the System 

$ catkin_create_pkg octomap_localization roscpp rospy std_msgs 
write my code in the “octomap_localization” directory 

7 

https://github.com/floatlazer/semantic_slam.git
http://eigen.tuxfamily.org/


$ cd ~/catkin_ws 
$ catkin_make 
To run the five threads simultaneously, we have to run 4 commands in 4 terminals: 
$ roslaunch semantic_slam camera.launch 
$ roslaunch semamtic_slam slam.launch 
$ roslaunch semantics_slam semantic_mapping.launch 
$ rosrun octomap_localization octomap_localization 

 
System Structure 

The system structure is designed as fig. 11. Openni2 is used as the camera driver as 
usual, publishing two important image topics, /camera/rgb/image_raw and 
/camera/depth_registered/image_raw. The ORB slam2 thread would estimate camera poses of 
each frame in real-time and publish the transformation to the octomap generator thread. In the 
mean time, the semantic cloud thread takes in the two topics of camera and predict the 
semantic segmentation of each frame, generating a semantic point cloud and publishing it to 
the octomap generator thread. Therefore, the octomap generator now gets both the camera 
poses and the semantic information, which can lead to the insertion of the octomap. The 
octree of the octomap will then publish to the octomap localization thread. The localization 
would find out the target object coordinate in world frame according to the octree. The 
aformenetioned threads are all done this semester. Next semester, I wish to extract 2D grid 
mapping from the octomap and come up with the navigation algorithm. 

 
                                   Fig. 11 System Structure                                                     Fig. 12 Devices on Pioneer 

 
When running the system, the Xtion camera has to be connected with a notebook. 

Since the computation requires much power, the power supply has to be connected with the 
notebook as well. However, in order to move the camera around for constructing a precise 
map, the power supply should be protable. Thus, the devices are placed on a mobile robot 
Pioneer with a 21V-battery and a DC-AC converter (fig. 12). Instead of the typical method of 
handhelding the camera, I push around the Pioneer to let Xtion camera sees every couner of 
the room. 
 

8 



Algorithms 
I. Generating Semantic Point Cloud (PCL) 

The first step is to perform semantic segmentation on each frame. The CNN 
PSPNet model used is first trained on AED20K dataset that results in 150 different 
classes (fig. 13), and then fine-tuned on SUNRGBD dataset that results in 32 different 
classes (fig. 14). The rgb values of the SUNRGBD-trained model labels are 
combinations of multiples of 64. For example, the rgb value of a table is (128, 128, 
128) and that of a window is (192, 0, 0). Three sample results of the semantic 
segmentation are shown in fig. 15~17, which respectively represents window & sofa, 
TV & cabinet, and pillow & bed. 

 
                                                Fig. 13 ADE20K labels                                                  Fig. 14 SUNRGBD labels 
 

 
Fig. 15 wondow & sofa                   Fig. 16 TV & cabinet                       Fig. 17 pillow & bed 

 
The semantic result of each frame would combine with the ORB feature points 

extracted by ORB slam2 and generate a point cloud with semantic color registered. 
Besides the semantic color that the pixel belongs to, the confidence of the prediction 
is also saved with the semantic point cloud for further application. Overall, a point 
cloud memorizes the frame id, the size of the cloud, and the fields of each pixel, 
where the filed includes position values (xyz), rgb values, semantic color, and 
cofidence. 

9 



II. Merging Semantic PCL into an Octomap 
To talk about the construction of an octomap, the original octomap data 

structure (fig. 18) has to be illustrated in advance. The arrows represent the class 
inheritence relations. In the Github code I cloned down, the author defined another 
class SemanticsOcTree inheritting OccupancyOcTreeBase and a class 
SemanticsOcTreeNode inheritting ColorOcTreeNode. The newly defined classes own 
the member variables and functions that the original classes do, but with more data. 
They contain the semantic color and the confidence as well as some functions to 
support to insertion, computation, and access of those information.  

 
Fig. 18 Octomap data structure 

When a semantic point cloud and the current camera pose are accessed by the 
octomap generator, the points will first go through a voxel filter to down sample the 
points. Then we insert these points into the octomap. After that we perform 
raycasting to clear free space in a certain range. Next, we update inner nodes of 
octomap, i.e. voxels with lower resolution. Finally we serialize the updated octomap 
for visualization. 
 

III. Octomap Localization 
Before explaining the localization algorithm, we should first pay attention to 

the data structure (fig. 19) of an octree. An octree recursively cut each cube into 8 
voxels until it reaches its max depth. The size of the smallest voxel is defined by the 
resolution of the octree. This is an efficient way to store a map since it saves much 
memory compared to a point cloud. 

 
Fig. 19 Octree data structure 

10 



A more efficient aspect of an octree is that it would prune nodes that are not 
useful. For example, when a node is occupied by 8 children with the same semantic 
color, the children can be pruned. The children can also be pruned if their parent is 
unoccupied. We will later utilize this pruning algorithm as the spirit of the 
localization. 

While the aforementioned threads are creating the up-to-date octomap of the 
environment, octomap localization subscribes to the topic /octomap_full and search 
for the coordinate of some particular target objects. Reading the message from the 
topic, we can convert it to a ColorOcTree by msgToMap method defined in 
octomap_msgs library. Since it does not support the convertion to a 
SemnaticsOcTree, we can only get the node color representing the rgb value of the 
semantic color. Mapping the rgb value to what object it stands for, we can start the 
searching. 

Typically, when a node contains children with different semantic colors, it 
means that coordinate is the egde of an object. On the contrary, if a parent node is 
occupied with children having the same semantic color, it is more possible that the 
coordinate is in the center of the target object. Take the scenario in fig. 20 for 
example, where a color represent an object. On the left is the octree data structure, and 
on the right is the actual object distribution in space. In the second layer, the parent 
node on the left and the right have children with different semantic colors, and thus 
the coordinates are the edges of the red object. Nevertheless, the middle parent node 
contains 8 children all with the red color, so the children can be pruned. Therefore, the 
branch would be the shortest of all, and in the mean time, representing the coordinate 
of the center of the red object. Thus, the algorithm that I came up with this 
localization problem is to find the leaf node with the shortest depth having the target 
semantic color (fig. 21).  

 

 
Fig. 20 A scenario of an octree 

 

Greedy Search: Find the leaf with the least depth having the target semantic color. 
Fig. 21 Octomap localzation algorithm 

 

 

11 



Achievement 
In this project, I successfully implemented octomap localization on the semantic slam 

system, which is a visual serach application of slam. A demo video without the localization 
thread is at ​https://goo.gl/pcxhpR​, and a demo video with the localization thread is at 
https://goo.gl/DfUDRe​. An octomap localization algorithm is designed originally by me. It is 
proved the algorithm effective through testing.  
 
Future Work 

I. Search based on spatial relations 
The current search algorithm simply goes through every leaf node to find the 

lead with minimum depth, which is not an efficient way. In the future, I shoud 
develop a search algorithm utilizing spatial relations among objects. Take fig. 22 for 
example. If we want to find the location of a book, we can first look in the room with 
the highest possibility that a book is in it, which is a studyroom. Afterwards, we might 
look on a table rather than a chair. In conclusion, we find bigger objects related to the 
target object and then smaller objects, instead of directly find the rather small target 
object. 

 
Fig. 22 A Scenario of spatial relations 

 

II. 2D grid mapping and navigation 
In order to establish a complete localization and navigation system, the 

navigation function has to be added. The plan is to transform the 3D octomap into a 
2D grid map for path planning. The localization result will be sent to the navigation 
thread too. Applying the system on the mobile robot Pioneer, we look forward to 
making Pioneer walk to the destination according to the path planned by navigation. 
  

  

12 

https://goo.gl/pcxhpR
https://goo.gl/DfUDRe


Reference 
[1] V. Badrinarayanan, A. Kendall, and R. Cipolla. Segnet: A deep convolutional encoder-decoder architecture 
for image segmentation.​ arXiv preprint arXiv:1511.​00561, 2015. 
[2] A. Hornung, K. M. Wurm, M. Bennewitz, C. Stachniss, and W. Burgard. Octomap: An efficient probabilistic 
3d mapping framework based on octrees. ​Autonomous Robots​, 34(3):189–206, 2013. 
[3] R. Mur-Artal, J. M. M. Montiel, and J. D. Tardos. Orb-slam: a versatile and accurate monocular slam 
system. ​IEEE Transactions on Robotics​, 31(5):1147–1163, 2015. 
[4] R. Mur-Artal and J. D. Tardós. Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d 
cameras. ​IEEE Transactions on Robotics​, 33(5):1255–1262, 2017. 
[5] D. Galvez-L  ́ opez and J. D. Tard  ́ os. Bags of binary words for fast place recognition in image sequences. 
IEEE Trans. Robot​., vol. 28, no. 5, pp.1188–1197, 2012. 
[6] Chao Yu, Zuxin Liu, Xinjun Liu, Fugui Xie, Yi Yang, Qi Wei, Fei Qiao "DS-SLAM: A Semantic Visual 
SLAM towards Dynamic Environments." Published in the Proceedings of the 2018 ​IEEE/RSJ International 
Conference on Intelligent Robots and Systems​ (IROS 2018). 
[7] A. Aydemir, K. Sjoo, J. Folkesson, A. Pronobis, " Search in the real world: Active visual object search based 
on spatial relations" , in ​Proc. IEEE ICRA​, 2011, pp. 2818-2824 
[8] Xuan Zhang, Semantic SLAM, (2018), semantic_slam, ​https://github.com/floatlazer/semantic_slam 

13 

https://github.com/floatlazer/semantic_slam

