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2. Project goal 
 

We want to make Pepper a well-trained receptionist (Fig. 1). For 
example, if Pepper is a receptionist of a bank, we expect him to discover 
people coming in and try to greet them. Having some simple interactions with 
customers, Pepper would make higher value of user experience.  

 
Fig. 1 Pepper as a receptionist 



The project goal is to make Pepper learn some basic social skills through 
deep reinforcement learning. We define the state for Pepper to determine his 
action to be eight consecutively taken photos of his built-in camera, so that it 
mimics a person’s viewing of the surroundings. As for deep reinforcement 
learning, the quality and the amount of training data are the most important. 
Unfortunately, there isn’t any open source data relating to our environment 
setup, so we have to collect all data by ourselves, which is proved to be 
extremely time-consuming. Nevertheless, the experiments are setup as the 
following shows.  
 
3. Environment setup 
 

(1) Action space 
Due to the difficulties to teach Pepper about social intelligence, 

we have only picked four actions for Pepper to learn. At the last 
semester, “do nothing”, “shake hands”, “say hello”, and “say goodbye” 
are the actions. However, “saying goodbye” is somehow unnecessary 
because Pepper can just say goodbye right after shaking hands. 
Moreover, the actions lack for Pepper coming closer to the human. 
Therefore, in this semester, we redefine the four actions to be “do 
nothing”, “wave hands and say hello”, “moving forwards to human”, and 
“shake hands” (Fig. 2), which is also known as action space.  

 
Fig. 2 Action space of Pepper 

 
    (2) Observation space  
 

Observation space is another requirement for the reinforcement 
learning environment structure. It is mentioned that the state would be 
eight consecutively taken photo by Pepper in the previous section. The 
reason not to only record a single image is that we would like to collect 
data representing the time sequence. Not surprisingly, the observation 
space should be some constraints dealing with those images. The image 
resolution is chosen to be 120 pixels time 160 pixels, each with gray 



scale value 0 to 255, and these together construct the observation 
space. An example of a state is shown in Fig. 3. 

  
Fig. 3 An example of a state 

 
     (3) Triggering of Pepper 
 

Pepper would not start an episode unless someone comes into his 
sight (which is a natural reaction of human). Otherwise, Pepper would 
be crazily picking his action no matter what is in front of him. It is very 
possible for him to collect a lot of useless data with images without 
human. So what’s the trigger for Pepper to start the interaction? The 
answer is human detection. Human detection is implemented with an 
object detection model “Detectron”, which is published by Facebook this 
spring. This tool is quite powerful in that a person can be detected 
within approximately five meters, which is much further than the built-in 
human detection SDK of Pepper. The latter can only find people within 
1.8 meters. The following table is a comparison of two models (Table 1). 
 

Model Detectron Human detection API 

source Facebook Pepper SDK 

detection distance 5 meters 1.8 meters 

computing hardware GPU CPU 

accuracy High Low 

Table 1 Comparison between Detectron and Human detection API 

  
     (4) Default policy 
 

Before any training, Pepper decides its manner by a raw model. 



The raw model is to randomly choose an action from the action space. In 
an episode, the action would be removed from the action space after 
chosen by Pepper, in order to avoid redundancy of data. Only when 
Pepper tries to shake hands with human is the episode going to 
terminate. 

 
     (5) Reward 
 

During the termination, the system (code written by us) will act as 
a teacher to score his performance. On one hand, If he successfully 
shakes hands with a human (judgement by the touch sensor on his right 
hand), he gets one point for reward.  On the other hand, if he fails to 
shake, he gets minus point one point for penalty (Fig. 4). 

 

  
Fig. 4 Reward for Pepper 

 
    (6) Transition pair 
 

Except for the eight consecutive pictures that Pepper has to 
record, the transition pair is also a really important data for training. 
It not only tells which pictures correspond to this state, but also tells the 
action Pepper has chosen, the reward he has got for this step, and 
whether this state terminates or not as well (Fig. 5). Those data are 
saved into a pickle file and then reloaded while training.  

 
Fig. 5 Transition pair 

 
 
 
 



4. Data collection 
 
    (1) Location 
 

The data collection was carried out mainly at two locations. One is 
room 412 at AI center, and the other is the first floor of the same 
building, YongLin Biomedical Engineering Hall. Some images taken at 
these two places are shown in Fig. 6 & Fig. 7. 

 
Fig. 6 Images shot at room 412 

 
Fig. 7 Images shot at YongLin first floor 



 
The reasons that only two locations are utilized are that it is really 

difficult to carry Pepper around, and plus, strong wifi connection is 
required for transmitting data between him and computer. 
  

    (2) Some scenarios demonstrating 
 

The number of scenarios can be infinite. People can have tons of 
reactions after the same action done by Pepper in different 
circumstances. Two scenarios along with the pictures taken during that 
episode are shown in Fig. 8 & Fig. 9. Fig. 8 shows a situation in which the 
person is not showing willingness to talk with Pepper. Fig. 9 tells a 
circumstance that the person is very excited to interact. It should be 
noted that an episode could contain two to five transition states. Thus, 
the number of images in an episode is not constant. 

 

 
Fig. 8 People unwilling to interact scenario 

 

 
Fig. 9 People willing to interact scenario 

     (3) Progress up to now 
After a lot of efforts and consuming time, until now, 130 episodes 

as well as 304 transition pairs are recorded. Unfortunately, they might 
not be enough for training deep reinforcement learning model… 

 



5. PPO1 (proximal policy optimization) 
 

This is a deep reinforcement learning package that is open-sourced by 
OpenAI. It is based on actor-critic algorithm, which kind of fuses deep Q 
network and policy gradient together.  The original paper of actor-critic 
algorithm states that they are stochastic gradient algorithms on the parameter 
space of the actor. However, the learning rate is difficult to determine. If the 
learning rate is too big, policy won’t converge; if it is too small, we will wait for 
day and nights for training.  

PPO1 solves the problem of the uncertainty of learning rate in policy 
gradient by limiting the range that new policy updates below the percentage of 
new/old policy. Actually, Google AI and OpenAI were competing with each 
others at the time they both released the paper regarding to this algorithm 
(Fig. 10 & Fig. 11). The both algorithms published by them are similar but not 
the same totally. The main difference is the gradient to update actor. OpenAI 
chose to clip surrogate objective (Fig. 12), while Google AI plugged in KL 
penalty (Fig. 13). Both of them can reach the same goal. 

 
Fig. 10 Algorithm published by OpenAI 

  
Fig. 11 Algorithm published by Google AI 



 
Fig. 12 Clipped surrogate objective released by OpenAI 

 

 
Fig. 13 KL penalty released by Google AI 

 
 
6. Training 
 

I modified the code of PPO1, which was used to train Atari games 
originally, to the version I could use on my data. The followings are the efforts I 
made. 

 
(1) Loading data 

 
Each state contains eight pictures with shape=(120, 160,3), where 

“3” stands for three channels of RGB. I convert the RGB image into 
grayscale, so the image shape becomes (120, 160), omitting the only 
channel in the last index. After that, I concatenate eight pictures 
together to represent the state. Finally, the shape of the image is (120, 
160, 8). Of course, other data such as action, reward, and terminate are 
also loaded (Fig. 14). 

 
Fig. 14 Loading data  

(2) Environment class 
I have to reconstruct a class that fits our experiment environment. 

In the meanwhile, the environment has to inherit gym.env, which is a 
class that the original environment with Atari also inherits. I set the 
action dim, height and width of an image, action space, and observation 
space (Fig.15). 



 
Fig. 15 Rewriting environment  

 
(3) On-line learing to off-line learning 

 
At first, PPO1 was designed to train on-line. Unlike this project, 

they continue to receive data while acting with the environment. It can 
be trained with more and more data during training process. However, 
in our case, the data are collected in advance. We need to train off-line. 
Below is the code that I modified to make it off-line training (Fig. 16). 

 
Fig. 16 Code for off-line training 

 
(4) Training 

 
Due to the fact that the amount of data is quite a little, I only 

trained the network for 4 iterations. Rather than overfitting, I would 
prefer to make Pepper learn a little it further than the beginning. Below 
is the last iteration of training (Fig. 17). 



 
Fig. 17 Performance of the last iteration 

 
7. Demo video 
 

After the first training with three hundred transition pairs, the model is 
implemented into Pepper. Now, for the rest of data collection process, Pepper 
would not have to choose an action anymore. Instead, which action to pick is 
now computed by computer using the model. In that way, we can always 
retrain our model with new data, looking forward to an extreme accurate 
model making Pepper a perfect receptionist. 

 
Below are three links of demo video, demonstrating how Pepper acts 

after implementing the first trained model into it. 
 

(1) An example with successful interaction: https://goo.gl/rVepYb 
(2) Another example with successful interaction: https://goo.gl/Vkz6hL 
(3) An unsuccessful interaction: https://goo.gl/h6Rnv4 

 
We can see that Pepper really likes to shake hands with people now. 

Maybe it is because successfully shaking hands earns many points for him, so 
he tends to choose this action. Obviously, the model isn’t accurate enough. 
 
8. Future improvement 

 
There are many ways to improve the accuracy of the model. The 

followings are some of them: 
 

(1) Collect more and more data. 

https://goo.gl/rVepYb
https://goo.gl/Vkz6hL
https://goo.gl/h6Rnv4


(2) Increase the resolution of the image so that we can extract features such 
as face orientation or body gesture from it. 

(3) Create virtual image by combining different parts of a person and do the 
labeling by ourselves. 

 
Those methods seem to be nice. Nevertheless, method (1) is really, 

really time-consuming, and Pepper is too difficult to carry around to raise the 
environment variety. For method (2), taking high resolution photos would 
cause a great delay during interactions, which would definitely make users feel 
uncomfortable. As for method (3), I haven’t done any experiments with it yet. 
Maybe It will bring out well, but I assume the images won’t be too natural. 
 
9. Conclusion 

 
A deep reinforcement learning model was trained and implemented to 

Pepper. Although the accuracy is not high enough due to the difficulties of 
collecting sufficient data, Pepper did learn something such as moving forwards 
to the person before shaking hands. More techniques with getting data are 
indispensable and would promise a better model through retraining with those 
data. 
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