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Abstract—In this project, we built an application for Pepper 

which can serve deaf and speech-impaired people. Deep learning 

is used to recognize sign language so that Pepper can understand 

and interact with those who cannot speak and hear. SLAM is also 

implemented to construct a map for the surroundings and for 

further navigation. With the help of this application, Pepper is 

able to guide or provide other services for those disabled people. 
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I. INTRODUCTION 

Social robots have recently become a popular issue in 
robotics field since they can interact with humans and serve 
them. There are plenty of social robots being commercialized, 
but few of them are able to serve deaf and speech-impaired 
people. Therefore, we aim to build an application on the social 
robot, Pepper, so that it can understand sign language and 
communicate with disabled people. We developed a deep 
learning model for sign language recognition and involved in 
every developmental progress, including data collection, image 
processing, and training neural network. Moreover, we used 
simultaneous mapping and localization to accomplish the 
navigation work of Pepper and applied landmark detection to 
localize its position more precisely. The techniques mentioned 
above and robot manipulation were integrated into a complete 
project. Details are shown in the following parts. 

II. RELATED WORK 

A. Human action recognition 

The problem of sign language detection can be generalized 
as human action recognition, which has been long studied in 
computer vision area. Initially, handcrafted features have 
dominated this field for a long time. Improved Dense 
Trajectories (IDT) [1] is currently the one with best 
performance among them. It densely samples feature points in 
video frames and track them with optical flow, extracting 
different features along the trajectory. However, despite its 

good performance, this method is computationally intensive 
and can hardly be used in real-time applications. 

With recent availability of powerful parallel machines such 
as GPUs, deep convolutional neural networks (CNN) [2] have 
been shown to be successful on image recognition tasks [3]. To 
recognize actions in video, 3D convolutional networks [4] 
(Figure 1.b) with 3D kernels (filters extended along the time 
axis) extracting features from both spatial and temporal 
dimensions are introduced, so that spatial-temporal information 
and motions in adjacent frames can be captured. Based on 
these 3D kernels, Tran et al. [5] attempt to find generic 
descriptors for videos. They show that a network with 3 × 3 × 3 
homogeneous filters performs best among various architectures 
for 3D convolutional neural networks. 

 Besides 3D CNN, some studies employ different structure 
such as recurrent neural networks (RNN) (Figure 1.a) to exploit 
the temporal information. Baccouche et al. [6] tackle the 
problem of action recognition by adding a specific RNN 
known as Long-Short Term Memory (LSTM) [7] after a series 
of cascading CNNs. On the other hand, many recent works 
adopt multiple stream design [8] (Fig. 1). With external 
computed optical flow information, they can achieve very high 
performance on existing benchmarks. However, compared to 
3D CNN, both of these models require additional computation, 
and hence are not suitable for our real-time sign language 
recognition system. 

 

Fig. 1. Common action recognition model architectures 



B. Simultaneous localization and mapping 

The simultaneous localization and mapping (SLAM) 

problem of humanoid robots has frequently been investigated. 

Some have implemented localization and navigation 

capabilities on the Pepper using the ROS middleware, 

combining ROS Indigo with the Pepper NAOqi framework[9]. 

Others have tried to train neural networks to control the robot 

to reach the target location in urban dynamic environments. 

The robot has to rely on GPS and compass sensor to navigate 

from the starting point to the goal location in an environment 

with moving obstacles[10]. Still, SLAM is even improved 

with Rao-Blackwellized Particle Filters by Adaptive Proposals 

and Selective Resampling[11]. However, few of them 

integrate human interaction within, not to mention the target 

group of our project, the deaf and visually-impaired people. 

 

III. METHODOLOGY 

A. Sign Language Data Collecting 

It is not possible to include the whole set of sign language 
into our project since we have to collect all the data by 
ourselves. Therefore, we choose 9 commands (Yes, No, I want 
to go to restroom, I want to checkout, I want to drink that, I 
want to buy meat, I want to buy vegetable, I want to buy eggs 
and I want to buy fruits) that our robot should recognize. We 
record our video data with Kinect 2 as the built-in camera in 
pepper does not provide sufficient field of view (FOV) as well 
as resolution. Each video is 5 seconds long, or 25 frames with 
fps equals to 5. However, including RGBA, depth and infrared 
channels, the raw video size of Kinect 2 is 25 x 424 x 512 x 6, 
which is way too large for our model to handle. Therefore, we 
decide to keep only intensity (grayscale), depth and infrared 
information, crop to 320 x 320, and then down-sample it by a 
factor of 2, resulting in 1/17 of original size. Finally, we get 
180 videos after each of us records 5 videos for each command. 

B. Sign Language Data Preprocessing 

Since our data contains depth information, we can generate 

a mask that corresponds to the foreground part by thresholding 

at a certain depth value. However, there are many “holes” in 

the depth image, and thus in the generated mask. Hence, we 

perform binary closing then binary opening on the mask to 

remove these holes. Then, we fill the holes in original data 

with the local maximum value in the neighborhood, which can 

be done by grayscale closing. Finally, the hole-removed data 

is masked by the hole-removed mask, resulting in a clear 

foreground image. For more details, please refer to results 

section. 

C. Sign Language Model Training 

Our model architecture is shown in the Table 1. In order to 
minimize the time for prediction, our model contains only 
convolution, ReLU, pooling and fully connected layer, which 
can be highly parallelized. We do not use recurrent model like 
LSTM, and do not require external computation like optical 
flow. Following the principle [5] of designing 3D 
convolutional neural networks, the convolution filters are all of 

Table 1. Model architecture for sign language recognition. 

Layer Output Shape Param 

Input (batch size, 25, 160, 160, 1~3) 0 

Conv3D (batch size, 25, 160, 160, 32) 2624 

ReLU (batch size, 25, 160, 160, 32) 0 

MaxPooling3D (batch size, 12, 80, 80, 32) 0 

Conv3D (batch size, 12, 80, 80, 32) 27680 

ReLU (batch size, 12, 80, 80, 32) 0 

MaxPooling3D (batch size, 6, 40, 40, 32) 0 

Conv3D (batch size, 6, 40, 40, 64) 55360 

ReLU (batch size, 6, 40, 40, 64) 0 

MaxPooling3D (batch size, 3, 20, 20, 64) 0 

Conv3D (batch size, 3, 20, 20, 64) 110656 

ReLU (batch size, 3, 20, 20, 64) 0 

MaxPooling3D (batch size, 1, 10, 10, 64) 0 

Flatten (batch size, 6400) 0 

Fully Connected (batch size, 64) 409664 

Fully Connected (batch size, 9) 585 

Total Parameters: 606569 

shape 3 x 3 x 3. The input layer may consist of 1 to 3 channels, 
depending on how much information we use for training and 
prediction. We have tested 7 different configurations and found 
that using grayscale together with infrared gives best result. For 
more details, please refer to results section. Also, data 
augmentation including translation (along all three axes) and 
flipping is used to alleviate the problem of limited amount of 
training data. 

D. Face Detection 

Pepper is ready to offer service at any time. To trigger the 

social service of Pepper, face detection is implemented to 

detect a human. It is done by applying the face detection 

module in NAOqi API[12]. Once a face is detected by Pepper, 

the ALTracker, provided by NAOqi API as well, will turn its 

head and keep an eye contact with the person in front. In that 

way, people would be aware that he or she is detected by 

Pepper, and thus following interactions could start. 

E. Tablet Image Showing 

Usually, Pepper talks to people by text-to-speech function. 

However, due to the fact that the deaf aren’t able to listen to 

speech, the way to communicate with human is replaced by 

showing images on the tablet right in front of Pepper’s chest. 

Each image contains a sentence together with some pictures if 

necessary. 

This work is done by first uploading all the images that we 

would like to show to a new project in Choregraphe[13], a 

NAO software for connection between computer and Pepper. 

The project would then be uploaded to Pepper, transferring 

those image files to Pepper’s own memory. By that time, we 

can show those images on the tablet by applying image 

module in NAOqi API. 

F. Mapping and Localization 

To fulfill the navigation goal of our project, SLAM has to 

be implemented to get a map of the environment. We used the 



exploration API to construct a map as Fig. 2 shows. The 

exploration range is set to be at most 8 meters far from the 

original point. 

After exploring the environment, the map is loaded to a 

localization module which can be found in the NAOqi API as 

well. During every localization, Pepper would first relocalize 

itself with the last coordinate that it has just reached. After that, 

Pepper would move to the destination position according to 

the exploration map, and return the position where Pepper 

believes it is in. 

G. Landmark Detection 

To make sure Pepper precisely return to its original point 

after guiding people to some destination, coordinate 

calibration is done by landmark detection. We placed six 

landmarks on the floor near the original point, each with a 

specific coordinate and a phase angle. After Pepper believes 

that it has returned to the original point using the localization 

method, it would start to look for landmarks on the floor. If 

any landmark is in Pepper’s sight, Pepper would adjust its own 

position so that the relative position to the landmark is 

consistent with what it sees. The landmark detection would 

continue until Pepper arrives its original point. 

H. Object Recognition 

In order to grab objects, robots should detect whether the 

certain object appears within the range it could reach. 

Therefore, we applied the vision module in NAOqi API so that 

Pepper could understand different pictures and object sides 

and further recognized different objects. 

First, Pepper was taught to recognize specific object by 

receiving its information, including the contour and visual key 

points. Information for each target object was stored in one 

XML file and accompanied with its respective images and 

placed in the memory of the robot. With the information, 

Pepper could start recognize objects based on the recognition 

of visual key points and check whether the specific object 

exist in its view. The recognition process is robust to distance 

but the resolution of images would strongly impact the 

performance of this module. 

I. Robot Manipulation 

Pepper should also move to complete each task. In this 

project, we applied the motion module in NAOqi API to 

 

 
Fig. 2. Map constructed by exploration API. 

control Pepper’s pose and motion. The motion module 

provides several methods to facilitate robot movement. We 

chose joint control to make different poses and locomotion 

control to move the robot to certain places. The former 

directly controlled the positions of each individual robot joints. 

We specified the name of the joint, the target angle and the 

angular speed so that Pepper could hold a specific pose as we 

needed, such as grabbing a cup or waving. On the other hand, 

locomotion control enabled Pepper move to a target place on 

the ground plane by given the relative position data. 

Moreover, the motion module provides a function for 

Pepper that can avoid collision. The function could model the 

body of Pepper and calculate whether collision would happen. 

As long as this function is opened, we don’t have to worry that 

the robot would be crashed while programming. To be noticed, 

this function should be closed when we try to make Pepper 

grab an object. 

IV. EXPERIMENTAL SETUP 

A. Demo scenario 

The scenario for out project is set at a supermarket, where 

Pepper is standing at the entrance awaiting some deaf and 

speech-impaired customers. Those people can ask some 

questions by posing sign language to a camera nearby. Pepper 

would then react to the query and offer the service for humans. 

B. Hardware and software 

The hardware we utilized in our project contains Kinect 2 

for Xbox one, Pepper robot from SoftBank, and a laptop from 

Acer. The software we used includes Ubuntu 16.04, OpenCV, 

OpenGL, libfreenect2, pyfreenect2, cuda-8.0, tensorflow, 

Keras 2, Pepper SDK packages 2.5.5.5, Choregraphe 2.5.5.5. 

The following paragraph depicts the setup of these 

environments and how they connect to each other. 

C. Demo workflow 

Pepper is initially placed at the original point and ready for 

face detection. Once a face is detected by Pepper, the robot 

would be triggered and start to track the person’s face. There 

would be an image showing “What can I do for you?” on the 

tablet. An image showing “Please look at the camera.” would 

be displayed consecutively. The person would then turn to the 

Kinect camera which is placed at the right-hand side of Pepper, 

and pose the sign language of the command that Pepper can 

recognize. After approximately three seconds of video 

processing and recognition, Pepper would show an image on 

the tablet to confirm the request. The person should again turn 

to the Kinect camera to pose “yes” or “no”. If the answer is 

“no”, Pepper would show the image “What can I do for you?” 

to start another video recording. If the answer is “yes”, Pepper 

would perform the request queried by the person. Among the 

nine commands trained, one is “I want to drink that”. Pepper 

would operate object detection to make sure there are drinks 

on the table at the left-hand side of it, and then take the bottle 

for the person. Other commands are navigation requests. 

Pepper would lead you to the place you have asked for. Once 

Pepper arrives at the destination, it would turn around and 



 
Fig. 3. The experimental setup of our project

 

perform face detection again to face at the person. Next, 

Pepper raises his hand and shows an image reading “here it is” 

to inform the person it has successfully reach the destination. 

Finally, Pepper performs localization one more time to get 

back to its original point. Landmark detection is conducted 

afterwards to precisely calibrate Pepper return to the exact 

home position. At that time, Pepper would be ready for 

another service then. The overall experimental setup is 

depicted in Fig. 3. 

V. RESULTS 

A. Data preprocessing 

Raw data (Fig. 4) is a 25 frames, 5 seconds video, with 320 

* 320 pixels per frame in three channels: gray scale, depth, 

and IR (infrared ray). For every frame, a mask (Fig. 5) is 

created by its depth data with a selected threshold value, 2000 

(range 0 ~ 65535). To smooth the mask and avoid the noise, 

we apply a binary-closing algorithm, then with binary-opening 

algorithm to each mask. The mask is roughly the range of 

human in the video. Three channels (Fig. 6) will then be 

applied a closing algorithm and filtered by the mask. Finally, a 

linear normalization is applied to each channel, and it is ready 

to go into model for training and testing. 

 

 

 
Fig. 4. A raw data with 25 frames and 3 channels 

 
 

 
Fig. 5. Mask construction 



 
Fig. 6. Data preprocessing of three channels 

B. Model with different input channels 

The models were trained under different set of data, with 

all the possible combinations of channels. The one input 

channel model (Table 2) shows that every single channel is 

able to provide enough information for recognition. Depth 

data shows less capability in the model however it is the 

essential data for data preprocessing. In the end, the lowest 

loss one is the Gray+IR model with loss 0.0627, and with the 

probability of correct recognition higher than 99% on 

validation data. 

C. Pepper simultaneous localization and mapping 

After several times of exploration, the map is accurate 

enough for Pepper to arrive at the destination within radius of 

50 centimeters.  Although it is not 100-percent precise, the 

error is acceptable since humans can easily find the products 

they want if they are already at the zone nearby. Moreover, for 

the returning process of Pepper, landmark calibration is 

combined to enhance the position accuracy. We thus conclude 

the SLAM to be successful. 
Table 2. The loss of each single input channel 

Input channel Loss 

Gray 0.1654 

Depth 0.2750 

IR 0.1348 

Gray+Depth 0.1427 

Gray+IR 0.0627 

Depth+IR 0.2597 

Gray+Depth+IR 0.1170 

 

VI. CONCLUSION 

Utilizing deep learning, the nine commands consisted of 

consecutive sign languages have been successfully trained 

with high recognition accuracy. Pepper SLAM has been 

carried out with first exploring the surroundings, generating a 

map, and the localization during navigation afterwards. 

Furthermore, NAOqi APIs such as face detection, landmark 

detection, tablet image showing, object recognition, and robot 

manipulation are all integrated to complete the service. In sum, 

a service robot aimed for deaf and speech-impaired people is 

brought out in this project. 

For future improvement, more variant data could be 

collected to train a model even more robust. ROS SLAM can 

also be implemented to make the navigation more precise. The 

size of the map can be expanded to satisfy the need in a real 

supermarket as well. However, although there remains some 

improvements to be made, the project done is considered a 

complete service for making deaf and speech-impaired 

people’s life more convenient. 
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