
Service Robot for Deaf and Speech-impaired People
Demo video link:

https://www.space.ntu.edu.tw/navigate/s/B0677E24C6B042988FCDD705B77E351AQQY

Hsuan-Chu, Lin

Electrical Engineering Department

National Taiwan University

Taipei, Taiwan

b03901065@ntu.edu.tw

Wei-Li, Lin

Computer Science Department

National Taiwan University

Taipei, Taiwan

b03902047@ntu.edu.tw

Yi-Chen, Hsu

Electrical Engineering Department

National Taiwan University

Taipei, Taiwan

b03901063@ntu.edu.tw

Szu-Yu, Mo

Electrical Engineering Department

National Taiwan University

Taipei, Taiwan

b04901164@ntu.edu.tw

Abstract—In this project, we built an application for Pepper

which can serve deaf and speech-impaired people. Deep learning

is used to recognize sign language so that Pepper can understand

and interact with those who cannot speak and hear. SLAM is also

implemented to construct a map for the surroundings and for

further navigation. With the help of this application, Pepper is

able to guide or provide other services for those disabled people.

Keywords—service robots, action recognition, computer vision,

deep learning, SLAM, Pepper

I. INTRODUCTION

Social robots have recently become a popular issue in
robotics field since they can interact with humans and serve
them. There are plenty of social robots being commercialized,
but few of them are able to serve deaf and speech-impaired
people. Therefore, we aim to build an application on the social
robot, Pepper, so that it can understand sign language and
communicate with disabled people. We developed a deep
learning model for sign language recognition and involved in
every developmental progress, including data collection, image
processing, and training neural network. Moreover, we used
simultaneous mapping and localization to accomplish the
navigation work of Pepper and applied landmark detection to
localize its position more precisely. The techniques mentioned
above and robot manipulation were integrated into a complete
project. Details are shown in the following parts.

II. RELATED WORK

A. Human action recognition

The problem of sign language detection can be generalized
as human action recognition, which has been long studied in
computer vision area. Initially, handcrafted features have
dominated this field for a long time. Improved Dense
Trajectories (IDT) [1] is currently the one with best
performance among them. It densely samples feature points in
video frames and track them with optical flow, extracting
different features along the trajectory. However, despite its

good performance, this method is computationally intensive
and can hardly be used in real-time applications.

With recent availability of powerful parallel machines such
as GPUs, deep convolutional neural networks (CNN) [2] have
been shown to be successful on image recognition tasks [3]. To
recognize actions in video, 3D convolutional networks [4]
(Figure 1.b) with 3D kernels (filters extended along the time
axis) extracting features from both spatial and temporal
dimensions are introduced, so that spatial-temporal information
and motions in adjacent frames can be captured. Based on
these 3D kernels, Tran et al. [5] attempt to find generic
descriptors for videos. They show that a network with 3 × 3 × 3
homogeneous filters performs best among various architectures
for 3D convolutional neural networks.

 Besides 3D CNN, some studies employ different structure
such as recurrent neural networks (RNN) (Figure 1.a) to exploit
the temporal information. Baccouche et al. [6] tackle the
problem of action recognition by adding a specific RNN
known as Long-Short Term Memory (LSTM) [7] after a series
of cascading CNNs. On the other hand, many recent works
adopt multiple stream design [8] (Fig. 1). With external
computed optical flow information, they can achieve very high
performance on existing benchmarks. However, compared to
3D CNN, both of these models require additional computation,
and hence are not suitable for our real-time sign language
recognition system.

Fig. 1. Common action recognition model architectures

B. Simultaneous localization and mapping

The simultaneous localization and mapping (SLAM)

problem of humanoid robots has frequently been investigated.

Some have implemented localization and navigation

capabilities on the Pepper using the ROS middleware,

combining ROS Indigo with the Pepper NAOqi framework[9].

Others have tried to train neural networks to control the robot

to reach the target location in urban dynamic environments.

The robot has to rely on GPS and compass sensor to navigate

from the starting point to the goal location in an environment

with moving obstacles[10]. Still, SLAM is even improved

with Rao-Blackwellized Particle Filters by Adaptive Proposals

and Selective Resampling[11]. However, few of them

integrate human interaction within, not to mention the target

group of our project, the deaf and visually-impaired people.

III. METHODOLOGY

A. Sign Language Data Collecting

It is not possible to include the whole set of sign language
into our project since we have to collect all the data by
ourselves. Therefore, we choose 9 commands (Yes, No, I want
to go to restroom, I want to checkout, I want to drink that, I
want to buy meat, I want to buy vegetable, I want to buy eggs
and I want to buy fruits) that our robot should recognize. We
record our video data with Kinect 2 as the built-in camera in
pepper does not provide sufficient field of view (FOV) as well
as resolution. Each video is 5 seconds long, or 25 frames with
fps equals to 5. However, including RGBA, depth and infrared
channels, the raw video size of Kinect 2 is 25 x 424 x 512 x 6,
which is way too large for our model to handle. Therefore, we
decide to keep only intensity (grayscale), depth and infrared
information, crop to 320 x 320, and then down-sample it by a
factor of 2, resulting in 1/17 of original size. Finally, we get
180 videos after each of us records 5 videos for each command.

B. Sign Language Data Preprocessing

Since our data contains depth information, we can generate

a mask that corresponds to the foreground part by thresholding

at a certain depth value. However, there are many “holes” in

the depth image, and thus in the generated mask. Hence, we

perform binary closing then binary opening on the mask to

remove these holes. Then, we fill the holes in original data

with the local maximum value in the neighborhood, which can

be done by grayscale closing. Finally, the hole-removed data

is masked by the hole-removed mask, resulting in a clear

foreground image. For more details, please refer to results

section.

C. Sign Language Model Training

Our model architecture is shown in the Table 1. In order to
minimize the time for prediction, our model contains only
convolution, ReLU, pooling and fully connected layer, which
can be highly parallelized. We do not use recurrent model like
LSTM, and do not require external computation like optical
flow. Following the principle [5] of designing 3D
convolutional neural networks, the convolution filters are all of

Table 1. Model architecture for sign language recognition.

Layer Output Shape Param

Input (batch size, 25, 160, 160, 1~3) 0

Conv3D (batch size, 25, 160, 160, 32) 2624

ReLU (batch size, 25, 160, 160, 32) 0

MaxPooling3D (batch size, 12, 80, 80, 32) 0

Conv3D (batch size, 12, 80, 80, 32) 27680

ReLU (batch size, 12, 80, 80, 32) 0

MaxPooling3D (batch size, 6, 40, 40, 32) 0

Conv3D (batch size, 6, 40, 40, 64) 55360

ReLU (batch size, 6, 40, 40, 64) 0

MaxPooling3D (batch size, 3, 20, 20, 64) 0

Conv3D (batch size, 3, 20, 20, 64) 110656

ReLU (batch size, 3, 20, 20, 64) 0

MaxPooling3D (batch size, 1, 10, 10, 64) 0

Flatten (batch size, 6400) 0

Fully Connected (batch size, 64) 409664

Fully Connected (batch size, 9) 585

Total Parameters: 606569

shape 3 x 3 x 3. The input layer may consist of 1 to 3 channels,
depending on how much information we use for training and
prediction. We have tested 7 different configurations and found
that using grayscale together with infrared gives best result. For
more details, please refer to results section. Also, data
augmentation including translation (along all three axes) and
flipping is used to alleviate the problem of limited amount of
training data.

D. Face Detection

Pepper is ready to offer service at any time. To trigger the

social service of Pepper, face detection is implemented to

detect a human. It is done by applying the face detection

module in NAOqi API[12]. Once a face is detected by Pepper,

the ALTracker, provided by NAOqi API as well, will turn its

head and keep an eye contact with the person in front. In that

way, people would be aware that he or she is detected by

Pepper, and thus following interactions could start.

E. Tablet Image Showing

Usually, Pepper talks to people by text-to-speech function.

However, due to the fact that the deaf aren’t able to listen to

speech, the way to communicate with human is replaced by

showing images on the tablet right in front of Pepper’s chest.

Each image contains a sentence together with some pictures if

necessary.

This work is done by first uploading all the images that we

would like to show to a new project in Choregraphe[13], a

NAO software for connection between computer and Pepper.

The project would then be uploaded to Pepper, transferring

those image files to Pepper’s own memory. By that time, we

can show those images on the tablet by applying image

module in NAOqi API.

F. Mapping and Localization

To fulfill the navigation goal of our project, SLAM has to

be implemented to get a map of the environment. We used the

exploration API to construct a map as Fig. 2 shows. The

exploration range is set to be at most 8 meters far from the

original point.

After exploring the environment, the map is loaded to a

localization module which can be found in the NAOqi API as

well. During every localization, Pepper would first relocalize

itself with the last coordinate that it has just reached. After that,

Pepper would move to the destination position according to

the exploration map, and return the position where Pepper

believes it is in.

G. Landmark Detection

To make sure Pepper precisely return to its original point

after guiding people to some destination, coordinate

calibration is done by landmark detection. We placed six

landmarks on the floor near the original point, each with a

specific coordinate and a phase angle. After Pepper believes

that it has returned to the original point using the localization

method, it would start to look for landmarks on the floor. If

any landmark is in Pepper’s sight, Pepper would adjust its own

position so that the relative position to the landmark is

consistent with what it sees. The landmark detection would

continue until Pepper arrives its original point.

H. Object Recognition

In order to grab objects, robots should detect whether the

certain object appears within the range it could reach.

Therefore, we applied the vision module in NAOqi API so that

Pepper could understand different pictures and object sides

and further recognized different objects.

First, Pepper was taught to recognize specific object by

receiving its information, including the contour and visual key

points. Information for each target object was stored in one

XML file and accompanied with its respective images and

placed in the memory of the robot. With the information,

Pepper could start recognize objects based on the recognition

of visual key points and check whether the specific object

exist in its view. The recognition process is robust to distance

but the resolution of images would strongly impact the

performance of this module.

I. Robot Manipulation

Pepper should also move to complete each task. In this

project, we applied the motion module in NAOqi API to

Fig. 2. Map constructed by exploration API.

control Pepper’s pose and motion. The motion module

provides several methods to facilitate robot movement. We

chose joint control to make different poses and locomotion

control to move the robot to certain places. The former

directly controlled the positions of each individual robot joints.

We specified the name of the joint, the target angle and the

angular speed so that Pepper could hold a specific pose as we

needed, such as grabbing a cup or waving. On the other hand,

locomotion control enabled Pepper move to a target place on

the ground plane by given the relative position data.

Moreover, the motion module provides a function for

Pepper that can avoid collision. The function could model the

body of Pepper and calculate whether collision would happen.

As long as this function is opened, we don’t have to worry that

the robot would be crashed while programming. To be noticed,

this function should be closed when we try to make Pepper

grab an object.

IV. EXPERIMENTAL SETUP

A. Demo scenario

The scenario for out project is set at a supermarket, where

Pepper is standing at the entrance awaiting some deaf and

speech-impaired customers. Those people can ask some

questions by posing sign language to a camera nearby. Pepper

would then react to the query and offer the service for humans.

B. Hardware and software

The hardware we utilized in our project contains Kinect 2

for Xbox one, Pepper robot from SoftBank, and a laptop from

Acer. The software we used includes Ubuntu 16.04, OpenCV,

OpenGL, libfreenect2, pyfreenect2, cuda-8.0, tensorflow,

Keras 2, Pepper SDK packages 2.5.5.5, Choregraphe 2.5.5.5.

The following paragraph depicts the setup of these

environments and how they connect to each other.

C. Demo workflow

Pepper is initially placed at the original point and ready for

face detection. Once a face is detected by Pepper, the robot

would be triggered and start to track the person’s face. There

would be an image showing “What can I do for you?” on the

tablet. An image showing “Please look at the camera.” would

be displayed consecutively. The person would then turn to the

Kinect camera which is placed at the right-hand side of Pepper,

and pose the sign language of the command that Pepper can

recognize. After approximately three seconds of video

processing and recognition, Pepper would show an image on

the tablet to confirm the request. The person should again turn

to the Kinect camera to pose “yes” or “no”. If the answer is

“no”, Pepper would show the image “What can I do for you?”

to start another video recording. If the answer is “yes”, Pepper

would perform the request queried by the person. Among the

nine commands trained, one is “I want to drink that”. Pepper

would operate object detection to make sure there are drinks

on the table at the left-hand side of it, and then take the bottle

for the person. Other commands are navigation requests.

Pepper would lead you to the place you have asked for. Once

Pepper arrives at the destination, it would turn around and

Fig. 3. The experimental setup of our project

perform face detection again to face at the person. Next,

Pepper raises his hand and shows an image reading “here it is”

to inform the person it has successfully reach the destination.

Finally, Pepper performs localization one more time to get

back to its original point. Landmark detection is conducted

afterwards to precisely calibrate Pepper return to the exact

home position. At that time, Pepper would be ready for

another service then. The overall experimental setup is

depicted in Fig. 3.

V. RESULTS

A. Data preprocessing

Raw data (Fig. 4) is a 25 frames, 5 seconds video, with 320

* 320 pixels per frame in three channels: gray scale, depth,

and IR (infrared ray). For every frame, a mask (Fig. 5) is

created by its depth data with a selected threshold value, 2000

(range 0 ~ 65535). To smooth the mask and avoid the noise,

we apply a binary-closing algorithm, then with binary-opening

algorithm to each mask. The mask is roughly the range of

human in the video. Three channels (Fig. 6) will then be

applied a closing algorithm and filtered by the mask. Finally, a

linear normalization is applied to each channel, and it is ready

to go into model for training and testing.

Fig. 4. A raw data with 25 frames and 3 channels

Fig. 5. Mask construction

Fig. 6. Data preprocessing of three channels

B. Model with different input channels

The models were trained under different set of data, with

all the possible combinations of channels. The one input

channel model (Table 2) shows that every single channel is

able to provide enough information for recognition. Depth

data shows less capability in the model however it is the

essential data for data preprocessing. In the end, the lowest

loss one is the Gray+IR model with loss 0.0627, and with the

probability of correct recognition higher than 99% on

validation data.

C. Pepper simultaneous localization and mapping

After several times of exploration, the map is accurate

enough for Pepper to arrive at the destination within radius of

50 centimeters. Although it is not 100-percent precise, the

error is acceptable since humans can easily find the products

they want if they are already at the zone nearby. Moreover, for

the returning process of Pepper, landmark calibration is

combined to enhance the position accuracy. We thus conclude

the SLAM to be successful.
Table 2. The loss of each single input channel

Input channel Loss

Gray 0.1654

Depth 0.2750

IR 0.1348

Gray+Depth 0.1427

Gray+IR 0.0627

Depth+IR 0.2597

Gray+Depth+IR 0.1170

VI. CONCLUSION

Utilizing deep learning, the nine commands consisted of

consecutive sign languages have been successfully trained

with high recognition accuracy. Pepper SLAM has been

carried out with first exploring the surroundings, generating a

map, and the localization during navigation afterwards.

Furthermore, NAOqi APIs such as face detection, landmark

detection, tablet image showing, object recognition, and robot

manipulation are all integrated to complete the service. In sum,

a service robot aimed for deaf and speech-impaired people is

brought out in this project.

For future improvement, more variant data could be

collected to train a model even more robust. ROS SLAM can

also be implemented to make the navigation more precise. The

size of the map can be expanded to satisfy the need in a real

supermarket as well. However, although there remains some

improvements to be made, the project done is considered a

complete service for making deaf and speech-impaired

people’s life more convenient.

REFERENCES

[1] H. Wang and C. Schmid, “Action Recognition with Improved
Trajectories.” ICCV, 2013.

[2] LECUN, Y., BOTTOU, L., BENGIO, Y., AND HAFFNER, P.
“Gradientbased learning applied to document recognition.” Proceedings
of the IEEE 86, 11 (1998).

[3] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton, “Imagenet
classification with deep convolutional neural networks.” Proc. Advances
in Neural Information Processing Systems (NIPS), pages 1097–1105,
2012.

[4] S. Ji, W. Xu, M. Yang, and K. Yu, “3D convolutional neural networks
for human action recognition.” IEEE Trans. Pattern Analysis and
Machine Intelligence, 2013.

[5] D. Tran, L. Bourdev, R. Fergus, L. Torresani, and M. Paluri. “Learning
spatiotemporal features with 3d convolutional networks.” ICCV, 2015.

[6] Moez Baccouche, Franck Mamalet, Christian Wolf, Christophe Garcia,
and Atilla Baskurt. “Sequential deep learning for human action
recognition.” In Proceedings of the Second International Conference on
Human Behavior Unterstanding, 2011.

[7] Sepp Hochreiter and Jurgen Schmidhuber. “Long short-term memory.” ̈
Neural Computation, 1997.

[8] Karen Simonyan and Andrew Zisserman. “Two-stream convolutional
networks for action recognition in videos.” In Proc. Advances in Neural
Information Processing Systems (NIPS), pages 568–576, 2014.

[9] Vittorio Perera, Tiago Pereira, Jonathan Connell, and Manuela Veloso.
“Setting Up Pepper For Autonomous Navigation And Personalized
Interaction With Users.” CoRR, abs/1704.04797, 2017.

[10] G.Capi, S.Kaneko, and B.Hua. “Neural Network based Guide Robot
Navigation: An Evolutionary Approach.” In Procedia Computer Science
Volume 76, 2015, Pages 74-79.

[11] G. Grisetti, C. Stachniss, and W. Burgard, “Improving grid-based slam
with rao-blackwellized particle filters by adaptive proposals and
selective resampling.” In Proceedings of the 2005 IEEE International
Conference on Robotics and Automation. IEEE, 2005, pp. 2432–2437.

[12] NAOqi API and Documentation “http://doc.aldebaran.com/2-
4/index_dev_guide.html”

WORK DISTRIBUTION

Team member works

Hsuan-Chu, Lin SLAM, object recognition, robot manipulation, video editing

Szu-Yu, Mo SLAM, face detection, landmark detection, tablet image showing, project integration

Wei-Li, Lin environment setup, data preprocessing, model training, video editing

Yi-Chen, Hsu environment setup, data preprocessing, model training, presentation

