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Abstract 
In this semester, I integrated 2D grid mapping as well as navigation function on to my 

system done last semester, which is a real-time visual search system based on the octomap 
constructed by ORB slam2 and semantic segmentation. The whole system runs on Robot 
Operating System (ROS), using the Asus Xtion camera as the only sensor. Adapting the 
RGB-D version of ORB slam2, the system is able to estimate camera poses accurately. Using 
a PSPNet model first trained on ADE20K dataset and then fine-tuned on SUNRGBD dataset, 
a semantic 3D octomap was constructed. The octomap was projected into 2D grid map for 
navigation. The navigation function was appended to the system. The target coordinate was 
generated by my self-defined localization algorithm, and the path planner is conducted by 
move_base. Although the system requires improvement for accuracy, it is now a complete 
visual search engine with SLAM and navigation. 
 
Motivation 

In last semester, I constructed a visual search system with SLAM and object 
localization functions. Later on, I thought that a robot should not only know where it is, but 
also figure out the way it can go to a specific destination. That is the moment I picture my 
system having navigation functions. Thus, I tried to implement the navigation methods into 
the current system. 
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Work From Last Semester 
I. System Structure (Partial of the Final System) 

The partial system structure is designed as fig. 1. As you can see, it does not 
include any map projection or navigation. Openni2 is used as the camera driver as 
usual, publishing two important image topics, /camera/rgb/image_raw and 
/camera/depth_registered/image_raw. The ORB slam2 thread would estimate camera 
poses of each frame in real-time and publish the transformation to the octomap 
generator thread. In the meantime, the semantic cloud thread takes in the two topics of 
camera and predict the semantic segmentation of each frame, generating a semantic 
point cloud and publishing it to the octomap generator thread. Therefore, the octomap 
generator now gets both the camera poses and the semantic information, which can 
lead to the insertion of the octomap. The octree of the octomap will then publish to 
the octomap localization thread. The localization would find out the target object 
coordinate in world frame according to the octree.  

  
                                   Fig. 1Partial System Structure                                                Fig. 2 Devices on Pioneer 

When running the system, the Xtion camera has to be connected with a 
notebook. Since the computation requires much power, the power supply has to be 
connected with the notebook as well. However, in order to move the camera around 
for constructing a precise map, the power supply should be portable. Thus, the devices 
are placed on a mobile robot Pioneer with a 21V-battery and a DC-AC converter (fig. 
2). Instead of the typical method of handheld camera, I push around the Pioneer to let 
Xtion camera sees every corner of the room. 

 
II. Algorithms 

A. Generating Semantic Point Cloud (PCL) 
The first step is to perform semantic segmentation on each frame. The 

CNN PSPNet model used is first trained on AED20K dataset that results in 
150 different classes (fig. 3), and then fine-tuned on SUNRGBD dataset that 
results in 32 different classes (fig. 4). The rgb values of the 
SUNRGBD-trained model labels are combinations of multiples of 64. For 
example, the rgb value of a table is (128, 128, 128) and that of a window is 
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(192, 0, 0). Three sample results of the semantic segmentation are shown in 
fig. 5~7, which respectively represents window & sofa, TV & cabinet, and 
pillow & bed. 

 
                           Fig. 3 ADE20K labels                                                  Fig. 4 SUNRGBD labels 
 

 
Fig. 5 wondow & sofa                   Fig. 6 TV & cabinet                       Fig. 7 pillow & bed 

The semantic result of each frame would combine with the ORB 
feature points extracted by ORB slam2 and generate a point cloud with 
semantic color registered. Besides the semantic color that the pixel belongs to, 
the confidence of the prediction is also saved with the semantic point cloud for 
further application. Overall, a point cloud memorizes the frame id, the size of 
the cloud, and the fields of each pixel, where the field includes position values 
(xyz), rgb values, semantic color, and confidence. 

B. Merging Semantic PCL into an Octomap 
To talk about the construction of an octomap, the original octomap 

data structure (fig. 8) has to be illustrated in advance. The arrows represent the 
class inheritance relations. In the Github code I cloned down, the author 
defined another class SemanticsOcTree inheriting OccupancyOcTreeBase and 
a class SemanticsOcTreeNode inheriting ColorOcTreeNode. The newly 
defined classes own the member variables and functions that the original 
classes do, but with more data. They contain the semantic color and the 
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confidence as well as some functions to support to insertion, computation, and 
access of those information.  

 
Fig. 8 Octomap data structure 

When a semantic point cloud and the current camera pose are accessed 
by the octomap generator, the points will first go through a voxel filter to 
down sample the points. Then we insert these points into the octomap. After 
that we perform 

raycasting to clear free space in a certain range. Next, we update inner 
nodes of octomap, i.e. voxels with lower resolution. Finally we serialize the 
updated octomap for visualization. 

C. Octomap Localization 
Before explaining the localization algorithm, we should first pay 

attention to the data structure (fig. 19) of an octree. An octree recursively cut 
each cube into 8 voxels until it reaches its max depth. The size of the smallest 
voxel is defined by the resolution of the octree. This is an efficient way to 
store a map since it saves much memory compared to a point cloud.

 
Fig. 9 Octree data structure 

A more efficient aspect of an octree is that it would prune nodes that 
are not useful. For example, when a node is occupied by 8 children with the 
same semantic color, the children can be pruned. The children can also be 
pruned if their parent is unoccupied. We will later utilize this pruning 
algorithm as the spirit of the localization. 

While the aforementioned threads are creating the up-to-date octomap 
of the environment, octomap localization subscribes to the topic /octomap_full 
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and search for the coordinate of some particular target objects. Reading the 
message from the topic, we can convert it to a ColorOcTree by msgToMap 
method defined in octomap_msgs library. Since it does not support the 
convertion to a SemnaticsOcTree, we can only get the node color representing 
the rgb value of the semantic color. Mapping the rgb value to what object it 
stands for, we can start the searching. 

Typically, when a node contains children with different semantic 
colors, it means that coordinate is the edge of an object. On the contrary, if a 
parent node is occupied with children having the same semantic color, it is 
more possible that the coordinate is in the center of the target object. Take the 
scenario in fig. 10 for example, where a color represent an object. On the left 
is the octree data structure, and on the right is the actual object distribution in 
space. In the second layer, the parent node on the left and the right have 
children with different semantic colors, and thus the coordinates are the edges 
of the red object. Nevertheless, the middle parent node contains 8 children all 
with the red color, so the children can be pruned. Therefore, the branch would 
be the shortest of all, and in the meantime, representing the coordinate of the 
center of the red object. Thus, the algorithm that I came up with this 
localization problem is to find the leaf node with the shortest depth having the 
target semantic color (fig. 11).  

 
Fig. 10 A scenario of an octree 

 

Greedy Search: Find the leaf with the least depth having the target semantic color. 
Fig. 11 Octomap localzation algorithm 
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Environment Setup 
The system requires an Asus Xtion camera and a pc/laptop with GPU running on 

Ubuntu 16.04. As for the software packages, there are several dependencies necessary. They 
will be illustrated in the following paragraphs.  

 
I. Installing ROS Kinetic 

Kinetic is the ROS version compatible with Ubuntu 16.04.  
$ sudo sh -c 'echo "deb http://packages.ros.org/ros/ubuntu $(lsb_release -sc) main" > 
/etc/apt/sources.list.d/ros-latest.list' 
$ sudo apt-key adv --keyserver hkp://ha.pool.sks-keyservers.net:80 --recv-key 
421C365BD9FF1F717815A3895523BAEEB01FA116 
$ sudo apt-get update 
$ sudo apt-get install ros-kinetic-desktop-full 
$ sudo rosdep init 
$ rosdep update 
$ echo "source /opt/ros/kinetic/setup.bash" >> ~/.bashrc 
$ source ~/.bashrc 
$ sudo apt install python-rosinstall python-rosinstall-generator python-wstool 
build-essential 
 

II. Installing Openni2 Driver for Xtion Camera 
$ sudo apt-get install ros-kinetic-rgbd-launch  
$ sudo apt-get install ros-kinetic-openni2-camera  
$ sudo apt-get install ros-kinetic-openni2-launch 
 

III. Installing Semantic_slam 
$ roscd 
$ git clone https://github.com/floatlazer/semantic_slam.git 
$ pip3 install torch torchvision  #pytorch 0.4.0 
Install Pangolin following instructions at https://github.com/stevenlovegrove/Pangolin 
Install OpenCV required version at leas 2.4.3 
Install Eigen3 following instructions at http://eigen.tuxfamily.org 
$ cd semantic_slam/ORB_SLAM2 
$ ./build.sh 
$ rosdep install semantic_slam 
$ cd ~/catkin_ws 
$ catkin_make 

 
IV. Developing octomap_localization 

$ catkin_create_pkg octomap_localization roscpp rospy std_msgs 
write my code in the “octomap_localization” directory 
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$ cd ~/catkin_ws 
$ catkin_make 

 
V. Installing octomap_server 

It should be a default package for ROS. However, if the package is missing,  
$ cd ~/catkin_ws 
$ git clone https://github.com/OctoMap/octomap_mapping.git  
$ rosrun tf tf_echo camera_rgb_optical_frame camera_rgb_frame 
add a node to transform original fixed frame_id /world to /map with previous found tf 
$ rosrun tf static_transform_publisher 0 0 0 0.5 -0.5 0.5 0.5 /world /map 100 
Modify some parameters in the octomap_mapping.launch: 

● frame_id => /world 
● colored_map => True 
● latch => True 
● ground_filter => True 

Also, remap some topics: 
● from cloud_in  to /semantic_pcl/semantic_pcl 
● from octomap_full  to /duplicate_octomap_full 
● from octomap_binary to /duplicate_octomap_binary 

 
VI. Installing LzRobot 

$ cd catkin_ws/src 
$ git clone https://github.com/r06921017/lzrobot.git 
$ cd ~/catkin_ws 
$ catkin_make 
 

VII. Write pub and sub for target coordinate 
Modify the code in octomap_localization.cpp so that it will publish the target  
coordinate in the msg type: float64, float64, and float64. Of course you will have to  
create the.msg file. Next, write the listner in the lzrobot package. 
$ cd ~/catkin_ws 
$ catkin_make 
  

VIII. Running the System 
To run the five threads simultaneously, we have to run 8 commands in 7 terminals: 
$ roslaunch semantic_slam camera.launch 
$ roslaunch semantic_slam slam.launch 
$ roslaunch semantic_slam semantic_mapping.launch  
$ roslaunch octomap_server octomap_mapping.launch 
$ roslaunch octomap_localization octomap_localization.launch 
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first connect pioneer with laptop usb, secondly power-on pioneer, and then launch a 
new terminal. Run the next 2 steps in the same tab. 
$sudo chmod 777 /dev/ttyUSB0 
$rosrun rosaria RosAria  
$roslaunch lzrobot pioneer_simple_move_base.launch 
If one need to control Pioneer manually, run the following command and you can  
control Pioneer with “uiojklm,.” keys. 
$rosrun teleop_twist_keyboard teleop_twist_keyboard.py  
/cmd_vel:=/RosAria/cmd_vel 
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Complete System Structure 
The complete system structure is shown as fig. 12, containing three main parts: 

SLAM, visual search, and navigation. After gaining the 3D octomap as well as the coordinate 
of target object, we run navigation based on the 2D projected map. The navigation here is 
only based on odometry after path planning with the projected map. Move_base would send 
message to RosAria through the topic /cmd_vel, and RosAria would then communicate with 
Pioneer to move according with the value in /cmd_vel. 

 
Fig. 12 Complete system structure 
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Challenge and Solution 
I. Multiple topics with the same name publishing 

Originally, /octomap_full and /octomap_binary are the two topics that both 
octomap_server and octomap_generator publish. Thus, the two packages are colliding 
with each other. 

My workaround is that instead of stopping one of them form publishing, I 
simply remap the topics of one package to other names. To illustrate the strategy more 
clearly, I changed the following: 

A. from cloud_in  to /semantic_pcl/semantic_pcl 
B. from octomap_full  to /duplicate_octomap_full 
C. from octomap_binary to /duplicate_octomap_binary 

 
II. Projected map not aligned with 3D octomap 

At first, the frame_id of octomap_server is set to be /world, which is the same 
frame_id set to octomap_generator, so I expect that both maps should align with each 
other. However, they did not (as shown fig. 13).  

Solution: generate a fixed frame suitable for octomap_server 
A. Step one: find the transform between 2 frames causing the tf mismatching 

$ rosrun tf tf_echo camera_rgb_optical_frame camera_rgb_frame  (fig. 14) 
B. Step two: add a node to transform original fixed frame_id /world to /map with 

previous found tf (fig. 15 ~ fig. 16) 
$ rosrun tf static_transform_publisher 0 0 0 0.5 -0.5 0.5 0.5 /world /map 100 

 

Fig. 13 Two maps not aligned with each other 

11 



 
Fig. 14 Step one: find the transform between 2 frames causing the tf mismatching 
 
 

 
Fig. 15 top view of projected map                               Fig. 16 side view of projected map 

 
III. Transformation between /world and /odom missing 

Originally, the transformation trees look like the graph in fig. 17, where the tf 
between /world and /odom in missing. /world is defined under semantic_slam, while 
/odom created by RosAria. In this way, Pioneer would not know where it is in the 
map, and thus impossible to navigate. 

To solve this problem, I try to make /odom the same as the transformation 
between /world and /camera_link at the moment Pioneer is open. Therefore, the initial 
robot pose is provided by ORB_slam2 instead of RosAria odometry. The schematic 
diagram is shown at fig. 18. After looking up the transform between /world and 
/camera_link, it will then feed to /odom, so finally the whole graph is connected (fig. 
19). By further checking camera_link is the same as odom, we are all set. 

 
Fig. 17 orginal rqt tree  
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Fig. 18 schematic diagram  

 
Fig. 19 connected graph 

 
IV. Passing target coordinate to move_base 

The target coordinate of aimed object is generated by my self-defined algorithm, and 
thus not published among nodes. In order to let the move_base package access target 
coordinate data, I have to first create a message type under 
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catkin_ws/src/octomap_localization/msg and modify cmakelists.txt as well as package.xml. 
Next, I modified some code in octomap_localization to publish the topic /target_coordinate, 
and at the move_base package, add a python script to subscribe the topic. In this way, the 
coordinate of the target object (x, y, z) is correctly transferred. (fig. 20) 

 
Fig. 20 /target_coordinate pub and sub 
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Achievement 
In this project, I successfully implemented octomap localization on the semantic slam 

system, which is a visual search application of slam. An octomap localization algorithm is 
designed originally by me. It is proved the algorithm effective through testing. In addition, 
the 3D semantic map is down projected to a 2D grid map, and fed in to move_base navigation 
package. To sum up, this is a complete visual search system with SLAM and navigation 
functions.  
 
Future Work 

I. Improve accuracy of constructing 3D map 
Currently the 3D map only preserves the relative positions of objects. 

However, the shape of the object is not preserved. For example, a table should be 
rectangular, but it is more like an oval in the current map. Moreover, the map is like a 
circle instead of the real shape of the room. Calibration of camera is required every 
time before building a map. Other algorithms may be implemented to the system as 
well. 

II. Improve navigation method with depth-camera simulated laser 
Right now the navigation method does not come with object avoidance due to 

the fact that I did not integrate the laser sensor with the system. Nevertheless, in order 
to make the system only dependent of visual sensors, I should simulate lasers with the 
depth data of Xtion camera. In that way, during navigation, Pioneer can avoid 
bumping into objects as well as calibrating its path real-time.  
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