

2019 Spring Introduction to Computer Networks
Final Project Report - Team 28

Face Dance Machine Web Application

Author: Yu-Shan Huang（黃郁珊）Szu-Yu Mo（莫絲羽）Chun-Hung Yu（游雋閎）
Student ID: b04901091 b04901164 b04901089
Email: qazwsx860809@gmail.com evamo.tw1@gmail.com davidyu52401@gmail.com
Department: Electrical Engineering Department, National Taiwan University
Advisor: Professor Wan-jiun Liao
Github repo: https://github.com/evamo0508/Face-Dance-Machine-python-webcam-flask
Demo website: http://stark-badlands-83896.herokuapp.com
Project date: June 2019

Content
● Abstract
● Game Workflow & How To Play
● Achievement
● Implementation
● Challenge
● Future Work
● Reference

mailto:qazwsx860809@gmail.com
mailto:evamo.tw1@gmail.com
mailto:davidyu52401@gmail.com
https://github.com/evamo0508/Face-Dance-Machine-python-webcam-flask
http://stark-badlands-83896.herokuapp.com/

Abstract
We deployed a Heroku website for users to play with face-dance-machine, meaning

that users will have to make similar facial expressions with the cartoon faces shown on screen
to win. In this project, we utilized several networking knowledge such as video streaming,
sound streaming, rate control, network security, python flask web application, javascript and
html. On the application side, we applied facial landmarks detection to the video captured,
and came up with an algorithm to recognize facial expressions through those landmarks.

Game Workflow
1. The web client sends video stream data (from the user's webcam) to a flask

server using socketio.
2. The server detects the facial expressions and sound in the video, and

overlays task images on frames.
3. The client receives the processed video stream and re-displays the results in

a different frame.

How To Play
1. Open any browser (Chrome prefered) and access the demo website mentioned down

below.
2. Allow webcam and microphone access during the first time visit. (might need to

refresh the page after allowing)
3. Look at the video on the right. Try to make your face as similar as any cartoon faces

in the video. The cartoon icons would disappear if the similarity is high enough.
4. If the task image is not a cartoon icon (i.e. a real person's face...), you should shout at

the microphone. The face would explode only if the sound is loud enough.
5. The game does not end, nor does it record the score. This is just for fun, so please

have fun!

Fig. 1 Game playing screenshot

Achievement
Our achievements can be easily illustrated by accessing the demo website. However,

we can break down our results to several parts, including:
1. basic streaming features

a. video streaming
b. sound streaming

2. advanced network features
a. deploying to Heroku
b. rate control
c. network security

3. machine learning application
a. facial expression recognition

Some screenshots demonstrating the above features would be shown in the following
paragraphs.

I. Basic Streaming Features
A. Video Streaming

We detect the facial expression at the server, so we need to send the
video to the server after compression. And then the client will request the
processed video from the server. Both client and server send and receive the
video at the same time.

B. Sound Streaming
The audio source comes from microphone. We want to design a real

time sound streaming and take the volume as an input of our game. Sound
streaming operates almost the same as video streaming. The minor difference
is that we need to create an audioContext to get the volume of audio, which is
exactly what we want.

II. Advanced Network Features
A. Deploying to Heroku

We have deployed our game to http://stark-badlands-83896.herokuapp.com
and users can access the url no matter which network domain he or she is in.
Typically, one should buy a domain to deploy a website, otherwise you can
only provide your service to people in the same local area network. Heroku is
a company that offers you a free domain as well as some memory space on
their server. Thus, we can own a domain by signing up a Heroku account.

B. Rate Control
It’s a trade-off between video quality and network latency. Since lag is

insufferable in video games, we need to decrease the video bitrate when
network is busy. But once the latency is low enough, we would increase the
video bitrate to get a better image quality.

C. Network Security

http://stark-badlands-83896.herokuapp.com/

SSLify is implemented to the web application so that any HTTP
request would be redirected to HTTPs. In this way, out application is provided
with an HSTS (HTTP Strict Transport Security) policy. For any HTTPs
request, a TLS handshake is required, in which the server and client side will
transfer their encryption protocol as well as authentication keys. During data
transfer, all messages would be encrypted by specific protocols and keys.
Therefore, any intruders who intercept messages cannot decrypt them.

III. Machine Learning Application
A. Facial Expression Recognition

We select seven facial expressions as galleries. The photos captured by camera
are first transformed into grayscale images, then we detect faces in images,
transform them into landmarks, and eventually compare those landmarks
(target) with galleries and compute their similarity.

1. Facial Landmark
● Face Detection

We first transform original images into grayscale. Then, we employ a
pretrained detector provided by Dlib to detect human faces in grayscale
images. The first detected face is chosen as an input image and passed
to next process.

● Landmark Detection
The first detected face images are then marked with 68 facial
landmarks after passed into another pretrained detector
"shape_predictor_68_face_landmarks." The target landmarks are
shown in fig. 7. The numbers shown in fig. 7 are used as fixed index.
For example, we can always locate mouth positions by accessing
landmarks 49~68.

left eyebrow landmark[18:22]

right eyebrow landmark[13:27]

left eye landmark[37:42]

right eye landmark[43:48]

nose landmark[28:36]

mouth landmark[49:68]

face contour landmark[1:17]

 Fig. 2 Facial landmarks Table 1 Facial landmarks

The following computation methods are all based on position of those
landmarks.

2. Facial Expressions Comparison
Local facial expression

As shown in below, there are several member function related to local
facial expression. Those are conditions we used to distinguish if a target
belongs to any gallery and compute their similarity. Their computation
algorithms will be illustrated in this part. For further explanation, our
computing algorithm only use ratio or relative size since the target size won't
be the same. [Landmark are replaced by L]

● Frown
We first compute the ratio of distance between
eyebrows(L[43,X]-L[40,X]) over distance between
eyes(canthuses)(L[23,X]-L[22,X]). If all the conditions that (1)the
ratio<0.7, (2)the vertical distance between left/right canthus and
left/right inner eyebrows is smallest among left/right eyes and left/right
eyebrows landmarks, (3)the one between left/right middle eye and
left/right middle eyebrow is largest, and (4) the left/right inner
eyebrows(L[22,Y]/L[23,Y]) is the lowest point among left/right
eyebrows, we determine the target is frowning.
[similarity=(1-eyebrow_dis/eye_dis)*1.5]

● MouthOpen
If the vertical distance between upper mouth and lower mouth
(L[67,Y]-L[63,Y]) is bigger than thickness of
mouth(L[63,Y]-L[52,Y]), we determine the target is opening his/her
mouth. [similarity=1]

● MouthClosed
If the vertical difference between mean of upper mouth points
(L[66:68,Y]) and mean of lower mouth point (L[62:64,Y]) is smaller
than thickness of mouth(L[63,Y]-L[52,Y]), we determine the target is
closing his/her mouth. [similarity=1]

● MouthLeft
We set middle point of nose(L[28,X]) as point of reference. After
calculating the difference between mouth landmarks and the point of
reference. If the amount of point whose difference is positive(viewed
as right point) is less than 8/10, we determine the target's mouth is in
left side. [similarity=1-positive_num/20*0.5]

● MouthRight
We set middle point of nose(L[28,X]) as point of reference. After
calculating the difference between mouth landmarks and the point of
reference. If the amount of point whose difference is negative(viewed
as left point) is less than 8/10, we determine the target's mouth is in
right side. [similarity=1-negative_num/20*0.5]

● Smile

We aim to detect if the mouth corners are rising. If mean of upper
mouth point(L[61:68,Y]+L[49,Y]+L[55,Y]) is lower than left/right
mouth corners(L[49,Y]/L[55,Y]), we determine the target is smiling.
[similarity=0.8+0.2*(height-L[49,Y]+L[55,Y])/2)/height]

● PointDown
We aim to detect if the mouth corners are pointing down. If mean of
upper mouth point(L[65:68,Y]+L[60,Y]) is higher than left/right
mouth corners(L[49,Y]/L[55,Y]), we determine the corner of target's
mouth are pointing down.
[similarity=0.8+0.2*(height-L[49,Y]+L[55,Y])/2)/height]

● MouthOval
We first calculate the width(L[55,X]-L[,49X]) and the
height(L[58,Y]-L[52,Y]) of mouth. If the ratio of height over width is
larger than 1, we determine the contour of target's mouth is oval.
[similarity=1]

● MouthCircle
We first calculate the width(L[55,X]-L[,49X]) and the
height(L[58,Y]-L[52,Y]) of mouth. If (height/width-1) is smaller than
0.5, we determine the contour of target's mouth is circle.
[similarity=1-abs(height/width-1)*0.5]

● FaceLeft
We set middle point of nose(L[28,X]) as point of reference. We
calculate the horizontal distance between left/right
face(L[1,X]/L[17,X]) and point of reference. If left_dis/right_dis>1.5,
we determine the target is turning to left. [similarity=1]

● FaceRight
We set middle point of nose(L[28,X]) as point of reference. We
calculate the horizontal distance between left/right
face(L[1,X]/L[17,X]) and point of reference. If right_dis/left_dis>1.5,
we determine the target is turning to right. [similarity=1]

Galleries

facial expression

conditions MouthClosed, Not Smile, Not PointDown
Not Frown

similarity 1

conditions MouthOpen, Smile

similarity smile_score*0.7+mouth_open*0.3

conditions Not Frown
MouthLeft, MouthCircle
FaceLeft

similarity mouth_left_score*0.5+mouth_circle_score*0.5

conditions Not Frown
MouthRight, MouthCircle
FaceRight

similarity mouth_right_score*0.5+mouth_circle_score*0.5

conditions MouthLeft, MouthClosed, Not smile

similarity mouth_left_score*0.5+mouth_closed_score*0.5

conditions PointDown

similarity mouth_pointDown_score

conditions MouthOpen, Not MouthLeft,
MouthCircle or MouthOval
Not Frown

similarity mouth_open_score*0.3+
(max(mouth_oval_score,mouth_circle_score))*0.7

Table 2 Facial expression detection algorithms

Implementation
We will now then explain the code and package used with each section just

mentioned, along with screenshots for each part of code.
I. Basic Streaming Features

A. Video Streaming
There are two parts in video streaming:

a. upload to server:
1. get a snapshot from camera
2. compress the image to jpeg
3. use socketio to upload the jpeg to the server

b. download processed video from server:

1. use http to request the image

B. Sound Streaming
a. upload to server:

1. get audio from microphone(use getUserMedia)
2. create as AudioContext
3. connect Audiocontent with audio stream and store in a buffer
4. select the largest value in every buffer and upload it to server

b. reation comes from server

1. server use socketIO to get the audio

2. Server analyzes audio volume. If the volume is bigger than 80,

the audio related icon (we use the Kaohsiung Mayor’s photo
this time) will disappear.

II. Advanced Network Features

A. Deploying to Heroku
This requires several steps using Heroku Cli command line tool as shown.

1. sign up for a Heroku account on Heroku official website
2. install heroku

$ brew install heroku
3. install heroku cli

$ brew tap heroku/brew && brew install heroku
4. $ git clone

https://github.com/evamo0508/Face-Dance-Machine-python-webcam-f
lask.git

5. $ cd Face-Dance-Machine-python-webcam-flask
6. download landmarks.dat at https://goo.gl/Z2JCch and put it in current

directory
7. $ heroku login
8. $ heroku create
9. Deploy to heroku

$ git push heroku master
It will remotely install dependencies in requirements.txt automatically.

10. $ heroku open
It redirects to your default browser and open the demo website.

B. Rate Control
We estimate the network traffic condition by the length of the sending

queue in the server. Every second, client would send a request for the length of
the queue. If the queue is longer than 2, we would decrease the bitrate. Else if
the queue is empty we would increase the bitrate.

We also control the bitrate by adjusting the compress quality rate of the

jpeg to be sent. The quality rate is in the range from 0.1 to 0.8.

https://github.com/evamo0508/Face-Dance-Machine-python-webcam-flask.git
https://github.com/evamo0508/Face-Dance-Machine-python-webcam-flask.git

C. Network Security

We are using an extension of python Flask as the security package,
which is flask-SSLify. The usage is shown in the following screenshot.

It is so simple that you simply have to from flask_sslify import SSLify,

and then use SSLify to wrap the flask app object up.
III. Machine Learning Application

A. Facial Expression Recognition
1. flip the image so the output can be intuitive.

2. use pretrained detector to find out facial landmarks

3. Use the rules mentioned in Achievement section III to distinguish the

expressions.(which are written in similarity.py)

Challenge
I. javascript reloading cache problem

At first, we modified our .js code and push it to Heroku, and soon found out
there are not any differences in the browser. Thanks to Byron Hsu, who told us some
tips while he was presenting his video in class, we were able to figure out that we had
to check the box “Disable cache” in the console log. In that way, the browser would
load the latest javascript file.

II. App only visible under internal network
At first, we utilized our laptop as the server instead of Heroku cloud server.

However, the web app is visible only under the same local area network. In other
words, the client side has to connect to the same wifi as the server to play the game.
We are not satisfied with this restriction. Therefore, we managed to deploy our project
to Heroku, providing clients with an url to access under any networks.

III. dlib installation
Dlib is the package used to predict facial landmarks. As for the installation, to

“pip install dlib” is easy as we can simply put this line in “requirements.txt”.
Nevertheless, dlib requires some dependencies including cmake and boost, which are
recommended to install via sudo apt-get. It is impossible to sudo apt-get while
pushing the project to Heroku server. The most solutions we find on the Internet is
that we have to first build a docker image, and import it to the project, but we fail to
do so.

At last, we found a perfect solution, which is to add “boost==0.1”,
“cmake==0.7.1”, and “boost-py” in “requirements.txt” before the “dlib” line. It works
like charm!

IV. Network condition estimation (for rate control)
At first, we wanted to estimate the network traffic by image packet loss rate.

However, we found that all the images were sent and received without loss even when
the latencies were huge. Therefore, we need to change the indicator. We noticed that
when the network was busy, the sending list at the server would start to stack.
Therefore, we choose the length of the list as our new indicator. Finally it worked
quite well.

Future Work
Currently, the game is aimed for a single person. We would like to make it a

two-person-online game so that people can play against each other, enhancing the value of
this app. To fulfill this target, the server should have different port for different clients to
transfer the video messages.

Moreover, we should try to solve the delay problem. Although some rate control has
been done, there is still some delay. To meet the need of competition, the transfer rate should
be increased to the standard that people cannot tell.

Finally, we can design a model to classify the facial expression instead of using
rule-based knowledge. This way can be more robust for recognizing various shape of face
features.

Reference
[1] python-web-flask github repository,
https://github.com/log0/video_streaming_with_flask_example/blob/master/main.py
[2] miguelgrinberg’s blog about authentication,
https://blog.miguelgrinberg.com/category/Authentication
[3] 為你自己學 Ruby on Rails 系列30章，第 29 章 - 網站部署(使用 Heroku),
https://ithelp.ithome.com.tw/articles/10189021
[4] Flask-SSLify github repository, https://github.com/kennethreitz/flask-sslify
[5] Flask-SocketIO, https://flask-socketio.readthedocs.io/en/latest/
[6] HTML with SocketIO, https://ithelp.ithome.com.tw/articles/10102886
[7] Web Audio API,
https://zhuanlan.zhihu.com/p/26536898?fbclid=IwAR14Rz-QEfKlCogzBQnOBDES0zthrkG
8n2ynh0RBv1yWrvLk0rUy4fs1PpI

https://github.com/log0/video_streaming_with_flask_example/blob/master/main.py
https://blog.miguelgrinberg.com/category/Authentication
https://ithelp.ithome.com.tw/articles/10189021
https://github.com/kennethreitz/flask-sslify
https://flask-socketio.readthedocs.io/en/latest/
https://ithelp.ithome.com.tw/articles/10102886
https://zhuanlan.zhihu.com/p/26536898?fbclid=IwAR14Rz-QEfKlCogzBQnOBDES0zthrkG8n2ynh0RBv1yWrvLk0rUy4fs1PpI
https://zhuanlan.zhihu.com/p/26536898?fbclid=IwAR14Rz-QEfKlCogzBQnOBDES0zthrkG8n2ynh0RBv1yWrvLk0rUy4fs1PpI

