
2018 Fall Embedded System Lab Final Project Report
F​ac​e​ Dance Machine on Raspberry Pi3

Author: Yu-Shan Huang（黃郁珊） Szu-Yu Mo（莫絲羽）
Student ID: b04901091 b04901164
Email: ​qazwsx860809@gmail.com​ evamo.tw1@gmail.com
Department: Electrical Engineering Department, National Taiwan University
Advisor: Professor Sheng-De Wang
Github repo: ​https://github.com/NTUEE-ESLab/2018Fall-FaceDanceMachine
Demo video: ​https://youtu.be/WfL82hLIuYI
Project date: January 2019

Content
● Abstract
● Motivation
● Implementation
● Challenge
● Achievement
● Reference

1

mailto:qazwsx860809@gmail.com
https://github.com/NTUEE-ESLab/2018Fall-FaceDanceMachine
https://youtu.be/WfL82hLIuYI

Abstract
In this project, we have successfully developed a “face dancing machine” game on

Raspberry Pi3. By “face dancing”, we simply make facial expressions identical to the cartoon
emojis on the screen, just like what we do to our legs when playing traditional “dance dance
revolution”. We integrated several OpenCV and Dlib functions with our own algorithms to
meet the goal of recognizing facial expression in real-time. Moreover, the GUI interface is
implemented via the Pygame package on Python3. The main contribution is that we have
completed complex computations on an embedded system rather than on a pc, where the
former only runs on ARM Cortex-A53 with 1024MB RAM.

2

Motivation
On one of the course class, out teach assistant had introduced us OpenCV face

detection as well as Dlib facial landmark detector. With a picamera in hand, we start to think
about what we can do with the video taken by it, and how we can integrate OpenCV and Dlib
in the system.

Lacking facial expressions is also one characteristic of us. Thus, we feel like
developing a game that our facial muscles could exercise. Motivated by the desire to develop
a game on a portable device, the face dance machine is about to born.

Implementation

I. Environment setup
All of our programs run on Python3 in Raspbian Jessie operating system

embedded in Raspberry Pi3 B+. In addition, several crucial packages are required for
running the scripts. Those packages include OpenCV 3.4.3, Pygame 1.9.3, Imutils
0.5.2, Dlib 19.16.99 and several dependencies. The installation of them, as well as the
usage of this project, would be mentioned in the following instructions.

A. OpenCV 3.4.3

The most important part to install OpenCV is that we have to turn on
NEON and VPFV3 hardware optimizations when compiling via source. ARM
NEON is an optimization architecture extension for ARM processors. It was
designed by ARM engineers specifically for faster video processing, image
processing, speech recognition, and machine learning. This optimization
supports Single Instruction Multiple Data (SIMD), which describes an
architecture where multiple processing elements in the pipeline perform
operations on multiple data points (hardware) all executed with a single
instruction. The ARM engineers also built VFPV3, a floating point
optimization, into the chip our Raspberry Pi 3’s use. Specifically, since we are
running Python3, we have to compile the source for Python3. The following
shows the steps of installation:

1. Expand filesystem and reclaim space
$ sudo raspi-config
choose “expand filesystem”
$sudo reboot
$ sudo apt-get purge wolfram-engine
$ sudo apt-get purge libreoffice*
$ sudo apt-get clean
$ sudo apt-get autoremove

2. Install dependencies
$ sudo apt-get update && sudo apt-get upgrade
$ sudo apt-get install build-essential cmake pkg-config

3

$ sudo apt-get install libjpeg-dev libtiff5-dev libjasper-dev
libpng12-dev
$ sudo apt-get install libavcodec-dev libavformat-dev libswscale-dev
libv4l-dev
$ sudo apt-get install libxvidcore-dev libx264-dev
$ sudo apt-get install libgtk2.0-dev libgtk-3-dev
$ sudo apt-get install libcanberra-gtk*
$ sudo apt-get install libatlas-base-dev gfortran
$ sudo apt-get install python2.7-dev python3-dev

3. Download the OpenCV source code
$ cd ~
$ wget -O opencv.zip
https://github.com/opencv/opencv/archive/3.3.0.zip
$ unzip opencv.zip
$ wget -O opencv_contrib.zip
https://github.com/opencv/opencv_contrib/archive/3.3.0.zip
$ unzip opencv_contrib.zip

4. Install Numpy
$ sudo pip3 install numpy

5. Compile and install the optimized OpenCV library for Raspberry Pi
$ cd ~/opencv-3.3.0/
$ mkdir build
$ cd build
$ cmake ​-D CMAKE_BUILD_TYPE=RELEASE \

 -D CMAKE_INSTALL_PREFIX=/usr/local \
 -D OPENCV_EXTRA_MODULES_PATH=~/opencv_contrib-3.3.0/modules \
 -D ENABLE_NEON=ON \
 -D ENABLE_VFPV3=ON \
 -D BUILD_TESTS=OFF \
 -D INSTALL_PYTHON_EXAMPLES=OFF \
 -D BUILD_EXAMPLES=OFF\

-D PYTHON_DEFAULT_EXECUTABLE=$(which python3) ..
$ sudo vim /etc/dphys-swapfile
change CONF_SWAPSIZE from 100 to 1024
$ sudo /etc/init.d/dphys-swapfile stop
$ sudo /etc/init.d/dphys-swapfile start
make sure we are in the opencv-3.3.0/build/ directory
$ sudo make -j4
$ sudo make install
$ sudo ldconfig
go back to reset the CONF_SWAPSIZE value and restart the swap
service

4

https://github.com/opencv/opencv/archive/3.3.0.zip
https://github.com/opencv/opencv_contrib/archive/3.3.0.zip

B. Pygame 1.9.3
$ sudo apt-get install python3-pygame

C. Imutils 0.5.2
$ sudo pip3 install imutils

D. Dlib 19.16.99
We can actually install Dlib in a relatively quick way via pip3 install.

However, if we would like to leverage the use of ARM NEON hardware
optimization, we would have to install it via source. Since the compilation
process requires lots of memory, we have to reclaim as much memory as
possible, just like what we did for installing OpenCV.

1. Update swap file size, boot options, and memory split
$ sudo vim /etc/dphys-swapfile
change CONF_SWAPSIZE from 100 to 1024
$ sudo /etc/init.d/dphys-swapfile stop
$ sudo /etc/init.d/dphys-swapfile start
$ sudo raspi-config
select Boot options => Desktop / CLI => Console Autologin
go back to the main screen
select Advanced Options => Memory Split
Update the GPU memory value to be 16MB and then exit
$ sudo reboot

2. Install dlib prerequisites
$ sudo apt-get update
$ sudo apt-get install build-essential cmake
$ sudo apt-get install libgtk-3-dev
$ sudo apt-get install libboost-all-dev

3. Download the OpenCV source code
$ git clone ​https://github.com/davisking/dlib.git
$ cd dlib
$ python3 setup.py install --yes USE_NEON_INSTRUCTIONS

4. Reset your swap file size, boot options, and memory split
go back to reset the CONF_SWAPSIZE value
restart the swap service
reset your GPU/RAM split to 64MB
update the boot options to boot into the desktop interface
$ sudo reboot

E. Usage
After setting up all the dependencies, we can clone the whole

repository to anywhere on our computer. A model for detecting faces has to be
downloaded into the same directory as well. Finally, we can run and play with
the program by executing the ‘main.py’ script. Instructions are shown as the
followings:

5

https://github.com/davisking/dlib.git

$ git clone ​https://github.com/NTUEE-ESLab/2018Fall-FaceDanceMachine.git
download the model here: ​https://goo.gl/Z2JCch​ and put it in the above directory
To execute the game, run
$ python3 main.py

II. System structure

Fig. 1 System structure

As figure 1 shows, five python scripts together form our system. To utilize the
advantage of object-oriented language, we wrapped “FaceDanceMachine”,
“pygamecamera”, and “Similarity” into classes. In “main.py”, we initialized pygame
and constructed a window for display. We also initialized a “Similarity” instance and
a “FaceDanceMachine” instance. While the former represents the facial expression
similarity calculator, the latter stands for the main game loop. As for the
“FaceDanceMachine.py”, we initialized the camera object for capturing images from
picamera and utilized several useful functions provided in “utils.py”, being mainly
functions for loading images.
Now we will briefly introduce each member and function of a class.

A. FaceDanceMachine
1. member variable

a) black: the tuple representing the color black
b) display: the pygame surface for display
c) camera: the Camera object for capturing images
d) similarity: the Similarity object for recognizing expressions
e) imgs: numpy array consists of game images
f) buttons: numpy array consists of game buttons
g) level: the level that the user has chosen
h) result: the facial expression recognition result
i) sim: the similarity of the facial expression recognition

2. member function
a) welcome(): show the welcome page and the start button
b) menu(): show the menu page with three level buttons
c) countDown(): play the countdown animation
d) game(): the main while loop
e) job(frame, mission): the facial expression recognition thread

target function

6

https://github.com/NTUEE-ESLab/2018Fall-FaceDanceMachine.git
https://goo.gl/Z2JCch

f) pause(): the pause page with resume and exit buttons
g) exit(): show exit page for one sec and shut down the program
h) end(score): show the game score with replay and exit buttons
i) run(): the function that wraps the system together

B. Camera
1. member variable

a) clist: list of available camera
b) camera: the pygame camera instance
c) screen: the pygame surface for display

2. member function
a) capture(): return an image surface captured by the camera
b) pg2cv(frame): transform pygame surface to OpenCV numpy

array.
c) stop(): the function to stop the pygame camera, releasing the

memory so that another progress can access the picamera
C. Similarity

1. member variable
a) detector: the dlib face detector
b) predictor: the dlib facial landmark predictor

2. member function
a) Frown(landmark): detect frowning or not
b) RightEyeWink(landmark): detect the right eye winking or not
c) MouthOpen(landmark): detect whether the mouth is open
d) MouthClosed(landmark): detect whether the mouth is closed
e) MouthLeft(landmark): detect whether the mouth is at the left

side
f) MouthRight(landmark): detect whether the mouth is at the right

side
g) Smile(landmark): detect whether the person is smiling or not
h) PointDown(landmark): detect whether the center of mouth is

higher than both sides of it
i) MouthOval(landmark): detect whether the mouth is an oval
j) MouthCircle(landmark): detect whether the mouth is a circle
k) MouthWide(landmark): detect whether the mouth is wide

enough
l) FaceLeft(landmark): detect whether the face is at the left side
m) FaceRight(landmark): detect whether the face is at the right

side
n) face_dance(target, face_mission): judging whether the target

image satisfies the standard for each face mission, and return
which mission the target completes and the similarity

7

Finishing the introduction of our classes, we should briefly talk about the main
game loop in our system and how the GUI looks. The workflow can be observed
through figure 2.

Fig. 2 Workflow of the game loop

The welcome page (fig. 3), the menu page (fig. 4), an example of the screen
in the game (fig. 5), and the exit page (fig. 6) are shown below. All images are
original.

Fig 3 Welcome page Fig. 4 Menu page

Fig 5 game page Fig. 6 exit page

8

III. Facial Express Comparison
We select ten facial expressions as galleries. The photos captured by camera

are first transformed into grayscale images, then we detect faces in images, transform
them into landmarks, and eventually compare those landmarks (target) with galleries
and compute their similarity.

A. F​acial Landmark
1. Face Detection

We first transform original images into grayscale. Then, we
employ a pretrained detector provided by Dlib to detect human faces in
grayscale images. The first detected face is chosen as an input image
and passed to next process.

2. Landmark Detection
The first detected face images are then marked with 68 facial

landmarks after passed into another pretrained detector
"shape_predictor_68_face_landmarks." The target landmarks are
shown in fig. 7. The numbers shown in fig. 7 are used as fixed index.
For example, we can always locate mouth positions by accesiing
landmarks 49~68.

left eyebrow landmark[18:22]

right eyebrow landmark[13:27]

left eye landmark[37:42]

right eye landmark[43:48]

nose landmark[28:36]

mouth landmark[49:68]

face contour landmark[1:17]
Fig. 7 Table 1

The following computation methods are all based on position
of those landmarks.

B. Facial Expressions Comparison

As shown in section II part C, there are several member function
related to local facial expression. Those are conditions we used to distinguish
if a target belongs to each galleries and compute their similarity. Their
computation algorithms will be illustrated in this part. For further explanation,
our computing algorithm only use ratio or relative size since the target size
won't be the same. [Landmark are replaced by L]

9

1. local facial expression
a. Frown

We first compute the ratio of distance between
eyebrows(L[43,X]-L[40,X]) over distance between
eyes(canthuses)(L[23,X]-L[22,X]). If all the conditions that
(1)the ratio<0.7, (2)the vertical distance between left/right
canthus and left/right inner eyebrows is smallest among
left/right eyes and left/right eyebrows landmarks, (3)the one
between left/right middle eye and left/right middle eyebrow is
largest, and (4) the left/right inner eyebrows(L[22,Y]/L[23,Y])
is the lowest point among left/right eyebrows, we determine the
target is frowning. [similarity=(1-eyebrow_dis/eye_dis)*1.5]

b. RightEyeWink
We first calculate the distance between upper eye

contour and lower eye contour. Two upper point correspond to
two lower point in each eye. After summing up distances in
each eye. The right one should be the lower. The second
condition is the vertical distance between eyebrows, we assume
right eyebrows is lower when people wink their right eye. We
determine the target is winking his/her right eye when either the
first or the second condition is fulfilled. [similarity=1]

c. MouthOpen
If the vertical distance between upper mouth and lower

mouth (L[67,Y]-L[63,Y]) is bigger than thickness of
mouth(L[63,Y]-L[52,Y]), we determine the target is opening
his/her mouth. [similarity=1]

d. MouthClosed
If the vertical difference between mean of upper mouth

points (L[66:68,Y]) and mean of lower mouth point
(L[62:64,Y]) is smaller than thickness of
mouth(L[63,Y]-L[52,Y]), we determine the target is closing
his/her mouth. [similarity=1]

e. MouthLeft
We set middle point of nose(L[28,X]) as point of

reference. After calculating the difference between mouth
landmarks and the point of reference. If the amount of point
whose difference is positive(viewed as right point) is less than
8/10, we determine the target's mouth is in left side.
[similarity=1-positive_num/20*0.5]

f. MouthRight
We set middle point of nose(L[28,X]) as point of

reference. After calculating the difference between mouth

10

landmarks and the point of reference. If the amount of point
whose difference is negative(viewed as left point) is less than
8/10, we determine the target's mouth is in right side.
[similarity=1-negative_num/20*0.5]

g. Smile
We aim to detect if the mouth corners are rising. If

mean of upper mouth point(L[61:68,Y]+L[49,Y]+L[55,Y]) is
lower than left/right mouth corners(L[49,Y]/L[55,Y]), we
determine the target is smiling.
[similarity=0.8+0.2*(height-L[49,Y]+L[55,Y])/2)/height]

h. PointDown
We aim to detect if the mouth corners are pointing

down. If mean of upper mouth point(L[65:68,Y]+L[60,Y]) is
higher than left/right mouth corners(L[49,Y]/L[55,Y]), we
determine the corner of target's mouth are pointing down.
[similarity=0.8+0.2*(height-L[49,Y]+L[55,Y])/2)/height]

i. MouthOval
We first calculate the width(L[55,X]-L[,49X]) and the

height(L[58,Y]-L[52,Y]) of mouth. If the ratio of height over
width is larger than 1, we determine the contour of target's
mouth is oval. [similarity=1]

j. MouthCircle
We first calculate the width(L[55,X]-L[,49X]) and the

height(L[58,Y]-L[52,Y]) of mouth. If (height/width-1) is
smaller than 0.5, we determine the contour of target's mouth is
circle. [similarity=1-abs(height/width-1)*0.5]

k. MouthWide
We first calculate the width(L[55,X]-L[,49X]) and the

height(L[58,Y]-L[52,Y]) of mouth. If height is larger width, we
determine the target's mouth is widely open.
[similarity=0.8+0.2*width/height*0.3]

l. FaceLeft
We set middle point of nose(L[28,X]) as point of

reference. We calculate the horizontal distance between
left/right face(L[1,X]/L[17,X]) and point of reference. If
left_dis/right_dis>1.5, we determine the target is turning to left.
[similarity=1]

m. FaceRight
We set middle point of nose(L[28,X]) as point of

reference. We calculate the horizontal distance between
left/right face(L[1,X]/L[17,X]) and point of reference. If

11

right_dis/left_dis>1.5, we determine the target is turning to
right. [similarity=1]

2. galleries

facial expression

conditions Frown
MouthOpen, MouthWide

similarity frown_score*0.6+mouth_wide_score*0.4

conditions MouthClosed, Not Smile, Not PointDown
Not Frown

similarity 1

conditions MouthOpen, Smile

similarity smile_score*0.7+mouth_open*0.3

conditions Not Frown
MouthLeft, MouthCircle
FaceLeft

similarity mouth_left_score*0.5+mouth_circle_score*0.5

conditions Not Frown
MouthRight, MouthCircle
FaceRight

similarity mouth_right_score*0.5+mouth_circle_score*0.5

conditions MouthLeft, MouthClosed, Not smile

similarity mouth_left_score*0.5+mouth_closed_score*0.5

conditions PointDown

similarity mouth_pointDown_score

12

conditions MouthOpen, Not MouthLeft,
MouthCircle or MouthOval
Not Frown

similarity mouth_open_score*0.3+
(max(mouth_oval_score,mouth_circle_score))*0.7

conditions RightEyeWink
MouthLeft, MouthOpen

similarity mouth_left_score*0.8+Reye_score*0.2

conditions RightEyeWink
Smile

similarity smile_score*0.8+Reye_score*0.2

Challenge
I. Conflict between PyQt5 & OpenCV video

Initially, we plan to use PyQt5 for the GUI of our game. However, it was later
found out that when PyQt5 is integrated with OpenCV, the video process of OpenCV
and the GUI process of PyQt5 would result in a segmentation fault when exiting the
program. The accumulation of segmentation faults would then cause the CPU to be
busy, and thus we cannot run any other programs for a period of time.

Since the above problem seems unable to be solved, we decided to look for
other GUI packages. That is the time we decided to use Pygame rather than PyQt5.
Pygame not only provides GUI interface, but also provides the picamera interface that
can perfectly match the display system. The came-along pygame.camera module
made displaying video stream rather easy.

II. Resource limitation of picamera

To predict the facial expression, we have to get the numpy array representing
each image. Nevertheless, the only hardware picamera can only be used by one
process, so it is impossible to get a stream via pygame and another stream via
OpenCV. The only solution is that we will have to conduct a data conversion
between Pygame surface and OpenCV numpy array.

Here the challenge is the time consumed for the data conversion. At first, we
were using the “array3d” function of pygame to transfer the pygame surface into a
numpy array. However, it was time-consuming due to the fact that the function copies
the array. We then later found out that another function “pixels3d” can bring out the

13

same result but with referencing the data. This has made the conversion process
faster.

III. Slow face detection of Dlib

This is the most time-consuming part of the whole process. By testing each
line of our program, we found that to detect the face in the image takes approximately
0.6 seconds, which is unacceptable for playing a game. Each frame is then delayed by
at least 3 seconds before showing on the screen. Since it is the problem of dlib, we
tried to search for dlib optimization. We found out that installing Dlib via source with
NEON support on can speed up Dlib processes. As a result, we $pipe uninstall dlib,
and then cloned the dlib libraries down and compiled it. That was a tough task though,
since compiling Dlib takes lots of RAMs. After the installation, the detection speeds
up to 0.5 seconds per frame. Although it was an improvement, it was way not enough
for our real-time game.

Noting that we have already met the hardware limits, we started to think if we
can do something in software to “deceive” the players, making them believe that the
game is running smoothly without finding out the slow detection of face. We then
thought of the thread programming that the professor has mentioned in class. We
created a thread for the calculation of facial expressions, including detecting the face,
predicting the facial landmarks, and computing whether the landmarks meet the
criteria of the face missions shown on screen. For every 50 frames, we wait for the
thread to finish its work, resulting in the fact that the frame being calculated is
actually the one 0.5 seconds ago. Through testing, we believed that the game is now
smooth enough.

IV. Picamera Suddenly not working

There was once that the picamera just stopped working. Searching for
solutions on the Internet did not help at all. Recalling what we had done, we thought
about the Dlib installation. It was mentioned that to install Dlib via source, we had to
rearranged the memory for the GPU on Raspberry Pi from 128MB to 16MB.
Nonetheless, we changed the memory back to 64MB rather than 128MB after the
installation, thinking that maybe it will provide more RAM for CPU. The
consequence was that 64MB was not enough for the picamera, so it stopped working.
Changing the memory back to 128MB solved everything.

14

Achievement
We came up with new algorithm to detect facial expressions based on

advanced face detection toolkit, which runs much more faster than directly training
models on Raspberry Pi3 but equally accurate. Besides we improve the delay when
displaying caused by calculation and make the game more entertaining.

To sum up, we solved lots of problems, including environment setting, toolkit
compatibility, camera accesing, image type transformation, runtime improvement, and
computing methods. We also spend time designing our own surface. All patterns in
the game are drawn by ourselves. Eventually, we have developped an interesting
game.

Reference

1. Rosebrock, A. (2017, October 9). Optimizing OpenCV on the Raspberry Pi. Retrieved
January 6, 2019, from
https://www.pyimagesearch.com/2017/10/09/optimizing-opencv-on-the-raspberry-pi/

2. Rosebrock, A. (2017, May 1). Install dlib on the Raspberry Pi. Retrieved January 17,
2019, from ​https://www.pyimagesearch.com/2017/05/01/install-dlib-raspberry-pi/

3. Rosebrock, A. (2018, January 22). Install dlib (the easy, complete guide). Retrieved
January 18, 2019, from
https://www.pyimagesearch.com/2018/01/22/install-dlib-easy-complete-guide/

4. Wang, G. T. (2018, May 17). Python 多執行緒 threading 模組平行化程式設計教學.
Retrieved January 18, 2019, from
https://blog.gtwang.org/programming/python-threading-multithreaded-programming-t
utorial/

5. Tseng, C. H. (2018, August 18). Face Landmark & Alignment. Retreived January 15.
2019, from https://chtseng.wordpress.com/2018/08/18/face-landmark-alignment/

15

https://www.pyimagesearch.com/2017/10/09/optimizing-opencv-on-the-raspberry-pi/
https://www.pyimagesearch.com/2017/05/01/install-dlib-raspberry-pi/
https://www.pyimagesearch.com/2018/01/22/install-dlib-easy-complete-guide/
https://blog.gtwang.org/programming/python-threading-multithreaded-programming-tutorial/
https://blog.gtwang.org/programming/python-threading-multithreaded-programming-tutorial/

